Sea Level Hype

It seems that alarmists get their exercise mainly by jumping to conclusions. Using datasets as trampolines they make great leaps of faith, oftentimes turning reality upside down in the process.

Update Feb. 17 at bottom

The latest example is the mass media excitement and exaggerations concerning sea level rise. Just consider the listing from Google News Feb. 13:

Miami could be underwater in your kid’s lifetime as sea level rise accelerates
USA Today

Yes, sea level rise really is accelerating
Ars Technica

Study: Sea level rise is accelerating and its rate could double in next century
Chicago Tribune

“It’s a big deal”: Melting ice sheets are accelerating sea level rise
CBS News Feb 13, 201

Satellites: Sea level rise to reach 2 feet by 2100
Minnesota Public Radio News (blog)

Satellite observations show sea levels rising, and climate change is accelerating it
CNN

The sea is coming for us
The Outline

Etc. Etc.Etc.

Although the principle author gave those juicy sound bites so craved by unreflective journalists, still the actual paper is quite restrained in its claims.  After all, they are only looking at 25 years of a very noisy dataset which has a quasi 60-year oscillation.  The paper is:

Climate-change–driven accelerated sea-level rise detected in the altimeter era By R. S. Nerem et al.

Abstract

Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change–driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y2. Coupled with the average climate-change–driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections.

Dr. John Ray provides a skeptical commentary, writing from Brisbane, Australia, at his blog (here) with my bolds.

Dedicated Warmist Seth Borenstein sets out a coherent story about warming causing sea-level rise. He regurgitates all the usual Warmist talking points regardless of their truth. He says, for instance, that the Antarctic is melting when it is not.

So we have to go back to the journal article behind Seth’s splurge to see what the scientists are saying.

And what we see there is very different from Seth’s confident pronouncements. We see a very guarded article indeed which rightly lists many of the difficulties in measuring sea level rise. And they can surmount those difficulties only by a welter of estimates and adjustments. Anywhere in that process there could be errors and biases. And as a result, we see that the journal authors describe their findings as only a”preliminary estimate” of sea level rise.

And it gets worse. When we look further into the journal article we see that the sea level rise is measured in terms of only 84 thousandths of one millimeter. So we are in the comedy of the absurd. Such a figure is just a statistical artifact with no observable physical equivalent.

So the sea level rise Seth talks about with great confidence ends up being an unbelievably small quantity measured with great imprecision! Amazing what you find when you look at the numbers, isn’t it?

Many advances in science start with a leap of imagination.  I seem to remember a chemist who woke up one morning with the first correct diagram of benzene.  And a man I admired said before sleeping he brought to mind things that were puzzling him.  Often in the morning he found answers combing out his hair.  Of course any such notions must then be validated through experimentation and measurement to become scientific knowledge.  A leap of faith is another matter altogether.

Sea Level Measurement Contortions

What’s involved in estimating sea level by means of satellites? Albert Parker is a seasoned researcher and explains to us laymen in this interview, followed by links to his recent publications. Senior Researcher Questions Satellite Measurements of Global Sea-Level By Ernest Dempsey with my bolds.

With a lot of rhetoric about the claimed sea-level rise and threat of global warming due to carbon emissions from human activities, the actual science of sea-level measurements and scientific inquiry of the verifiable degree of climate change has been lost in the noise. The following correspondence with Albert Parker, PhD, author of the 2014 paper Problems and reliability of the satellite altimeter based Global Mean Sea Level computation casts light on how reliable the various sea-level measurements are and whether the actual, on-ground science verifies the narrative of carbon-based climate change and alarming sea-level rise.

Ernest: Albert, thanks for taking my call for this Q&A. Would you please tell us about your academic and research background briefly?

Albert Parker: I received my MSc and PhD in Engineering many years ago, before the age of the commercial universities. I have been working after the PhD for 30 years in companies and universities. I started to work on climate change as an independent scientist, for my personal understanding, after the leaked Climategate emails in 2009, as I was curious to see what was really going on in the raw data.

Ernest: Can you please tell our readers the various methods scientists have used to measure the mean sea level at any point?

Albert Parker: Relative sea levels have been locally measured by tidal gauges for many years. A tidal gauge signal is characterized by oscillations on many different time scales. The tidal gauge signal is monthly averaged. A linear fitting of the monthly average values collected over a sufficiently long time window returns the trend. As the tide gauge instrument can move up and down, these sea levels are relative to the instrument.

The absolute global sea level is a hypothetical measure of the status of the ocean waters. Somebody has produced global mean sea level reconstructions from tide gauges since the 1700 or the 1800. These reconstructions are not reliable. Before the end of the 1800s, there was for example not a single tide gauge covering all the southern hemisphere. To compute a proper global mean sea level from tide gauges, you should need many gridded tide gauges along the world coastline, and a measure of their absolute vertical motion, both based on a sufficiently long common time window. There is not such a thing yet. As the trends significantly vary from one location to the other, it therefore only makes sense to focus on the average acceleration rather than the global mean sea level trend.

Ernest: In your 2014 paper, you inform that tide gauge measurements of mean sea level show negligibly small annual rise in mean sea level while satellite measurements give us a notably larger rise in sea level globally. Which of these two would you call more reliable and why?

Albert Parker: The only results to consider are local and global average trends and accelerations from tidal gauges of sufficient quality and length. If a global mean sea level from tide gauges can hardly be computed, you may still look at the individual tide gauges of enough length and quality to understand if there is acceleration or not. And so far, there has been very little acceleration in any tide gauge record over the 20th century and what is passed of the 21th century. Therefore, coastal management can be local, with adaptation measures needed where the sea level rises significantly because of extreme subsidence, and not certainly where the sea levels are rising slowly or are falling.

Regarding the satellite global mean sea level, this result is more a computation than a true measurement and it is not reliable. If you try to track by global positioning system (GPS) the position of selected fixed points, such as few GPS domes on land, and you try to compute the GPS time series to derive a GPS velocity, you may then discover that this much simpler computation, also constrained by the geodetic dimensions, still suffers significant uncertainties, because of satellite drift and other technicalities. It is therefore impossible to measure with nanometric precision the instantaneous height of all the water volume to then derive a time rate of change. The only thing that you can get from the satellite altimeter measurements is an almost detrended, noisy signal, as it was clear in the first results of the project. If subjective corrections are then applied to this signal, for any reason you get the satellite altimeter results that is not a measure, it is a computation, that lacking validation has very little value.

Ernest: Tell us about calibration and its role in sea level readings.

Albert Parker: It is not just a problem of calibration. You are trying to measure with a satellite altimeter the instantaneous, absolute, height, with accuracy up to the nanometer, of a continuously oscillating mass of water bounded by an irregular, continuously moving surface. With the much more established and reliable GPS system that serves many more goals than the monitoring of a climate change parameter, it is hard to compute with accuracy better than a couple of millimeters per year the time rate of change of the position of fixed GPS domes. The global mean sea level results of the satellite altimeter are unfortunately never validated computations, not certainly very accurate measurements.

Ernest: The observable change in sea level can be due to increase in amount of water in the oceans or upward tectonic movement of the seafloor, right? Is there any way to tell how much rise resulted from either?

Albert Parker: The situation is little bit more complicated. If you look at the relative sea level trends across the world, they rise and fall because of changing water conditions and land movements. If you are along the Pacific coast of the US for example, in Alaska, the sea levels are generally falling because the land is moving up (uplift). Conversely, if you look at California, the sea levels are rising mostly because the land is moving down (subsidence). Local factors produce significant differences in between the rates of sea level rise (trends).

Changes in tide levels over time evidenced in Fiji.

To get an accurate measure of the sea level rise by thermal expansion and mass addition from tide gauges, this is not easy. What we can see from the individual tide gauges, is that the contribution from mass addition and thermal expansion is about constant since the start of the 20th century. Since the year 1900, the warming of the oceans and the melting of the ices on land has therefore basically provided an almost constant contribution to the rate of rise of sea levels. Same time, the anthropogenic carbon dioxide emission has increased exponentially. This would be enough to conclude that the anthropogenic carbon dioxide emissions have from very little influence to no influence at all on the rate of rise of sea levels.

Ernest: Then there is the question of periodicity. Far as I get it from your paper, it is more scientific or reasonable to look at sea level change over the past least 60 years. Why is that?

Albert Parker: The sea levels are very well known to oscillate with many periodicities up to a quasi-60 years well shown in almost all the world tide gauges. If you study a tide gauge record and you want to compute a trend by linear fitting, you do need data collected over a time window long enough to understand what is a multidecadal natural oscillation and what is a sea level acceleration produced by intensifying mass addition and thermal expansion. It is unfortunately common to find peoples who cherry pick the short-term positive oscillation in selected locations to sell this result as the proof that global warming is real.

Obviously, the cherry pickers do not pick up the cherries in areas of opposite short-term oscillation where same approach could prove there is global cooling equally real. Similarly, they do not consider the fact that in the long-term locations, positive and negative phases of the oscillations have regularly followed each other over the time, and “unprecedented” short term sea level rises have been measured already about 60 years ago.

Ernest: Since you pointed out the shortcomings in sea level measurements by satellite altimetry and GPS, has the environmental science community responded to your work?

Albert Parker: The shortcomings of satellite altimetry to compute sea levels are very well known. The most part of the independent scientists, unfortunately mostly retired, acknowledges that there is something not that straight going on in the satellite altimeter result. Nils-Axel Morner and many others have written wonderful papers questioning the sea level claims. Problem are the dependent scientists, working in a commercial academy, and more than them, the general press and the politicians that have a clear interest to force the peoples to believe that global warming is real and they need more administration and control and more taxes.

Ernest: Speaking of press, we hear a lot in media about new researches finding links between anthropogenic carbon in atmosphere and sea level rise. And some have claimed disastrous consequences of this supposedly impending sea level threat. What’s your response when you read those stories?

Albert Parker: In the recent scientific paper reference [1], that of course will not receive any attention by the alarmists, we discuss how different experimental data sets of tide gauges show relatively small sea level trends, from +0.4 to +2 millimeters per year, and negligibly small sea level accelerations, just a few micrometers per year squared. These results demonstrate that the sea levels have not been driven by the anthropogenic carbon dioxide emission over the last 120 years, and it is very unlikely they will start be driven by magic right now. These trends and accelerations translate in forecasts to the year 2100 of 100-200 mm sea level rise, not certainly the 850 mm by the IPCC, nor the 1,670 or the 3,050 mm of works such as reference [2] or [3].

The figures below are a comparison of sea level measurements vs. sea level computations over the time window 1970 to 2017, and evidence based forecasts to the year 2100 vs. the model predictions. The difference amongst latest models and reality is increasing as opposed to being lessened. It should be the opposite. Many may certainly claim new links between the anthropogenic carbon dioxide in the atmosphere and the sea level rise, with disastrous consequences of this supposedly impending sea level threat. This does not mean they are correct.

Fig. 1 – Comparison of sea level rises predicted by the local panels [2] (BOS-NRC) and [3] (H++), predicted by the IPCC AR5 RCP8.5 (IPCC RCP8.5), and measured by the tide gauges (averages of different data sets, California-8, PSMSL-301, Mitrovica-23, Holgate-9, NOAA-199, US-71). Further details in [1].

From these graphs, we already know that up to 2017 the models have been wrong, and it is increasingly unlikely to expect more rather than less sea level rise by 2100 vs. the already exaggerated IPCC predictions.

Fig. 2 – Comparison of sea level rises by 2100 predicted by the local panels [2] (BOS-NRC) and [3] (H++), predicted by the IPCC AR5 RCP8.5 (IPCC RCP8.5), and inferred from tide gauge measurements of different data sets (California-8, PSMSL-301, Mitrovica-23, Holgate-9, NOAA-199, US-71). Further details in [1].

[1] Parker, A. & Ollier, C.D., CALIFORNIA SEA LEVEL RISE: EVIDENCE BASED FORECASTS VS. MODEL PREDICTIONS, Ocean and Coastal Management, Ocean & Coastal Management, Available online 19 July 2017, In Press, Corrected Proof. doi: 10.1016/j.ocecoaman.2017.07.008

More Resources:

Sea Level Rise: Just the Facts

Cutting Edge Sea Level Data

Fear Not For Fiji

Footnote:  Climate alarmists may be jumping the shark as well as jumping to conclusions.
“Jumping the shark” is attempting to draw attention to or create publicity for something that is perceived as not warranting the attention, especially something that is believed to be past its peak in quality or relevance. The phrase originated with the TV series “Happy Days” when an episode had Fonzie doing a water ski jump over a shark. The stunt was intended to perk up the ratings, but it marked the show’s low point ahead of its demise.

Update Feb. 17

Prompted by a question from hunter, I found this informative recent letter on this topic(my bolds):

From Reply from Nils-Axel Mörner on the problems of estimating Future Sea Level Changes as asked by Albert Parker in letter of January 2, 2018

There are physical frames to consider. Ice melting requires time and heating, strictly bounded by physical laws. At the largest climatic jump in the last 20,000 years – viz. at the Pleistocene/Holocene boundary about 11,000 years BP – ice melted under extreme temperature forcing; still sea level only rose at a rate of about 10 mm/yr (or just a little more if one would consider more extreme eustatic reconstructions). Today, under interglacial climatic conditions with all the glacial ice caps gone climate forcing can only rise global sea level by a fraction of the 11,000 BP rate, which in comparison with the values of Garner et al. [1] would imply:
well below 0.4 m at 2050 instead of +0.6 m
well below 0.9 m at 2100 instead of +2.6 m
well below 2.9 m at 2300 instead of +17.5 m

Consequently, the values given by Garner et al. [1] violate physical laws and common glaciological knowledge. Therefore, their values must not be set as standard in coastal planning (point 2 above).

The mean sea level rise over the last 125 years is +0.81 ±0.18 mm/yr. At Stockholm in Sweden, the absolute uplift over the last 3000 years is strictly measured at +4.9 mm/yr. The mean tide-gauge change is -3.8 mm/yr, giving a eustatic component of +1.1 mm/yr for the last 150 years. In Amsterdam, the long-term subsidence is known as +0.4 mm/yr. The Amsterdam/Ijmuiden stations record a relative rise of +1.5 mm/yr, which give a eustatic component of +1.1 mm/yr.

Global Loading Adjustment has been widely used in order to estimate global sea level changes. Obviously, the globe must adjust its rate of rotation and geoid relief in close agreement with the glacial eustatic rise in sea level after the last Ice Age. The possible internal glacial loading adjustment is much more complicated, and even questionable, however.

Direct coastal analysis of morphology, stratigraphy, biological criteria, coastal dynamics, etc usually offers the far best means of recording the on-going sea level variations in a correct and meaningful way. It calls for hard work in the field and deep knowledge in a number of subjects. We have, very successfully, applied it in the Maldives, in Bangladesh, in Goa in southern India, and now also in the Fiji Islands. In all these sites, direct coastal analyses indicate full eustatic stability over the last 50-70 years, and long-term variations over the last 500 years that are consistent with “rotational eustasy” or “Global Solar Cycle Oscillations” (GSCO).

 

 

 

 

On Coastal Climate Risk

Matthew Kahn raises the question at his blog Is Oakland “Inconsistent” as it Sues Fossil Fuel Companies While Downplaying Climate Risk in its Municipal Bond Prospectus? Excerpts below with my bolds.

Wall Street Journal: California localities warn of disaster when suing oil companies. So how come they don’t tell investors?

The WSJ has published a fascinating piece that points out an inconsistency in the expressed views of the leaders of Oakland’s city government. This coastal city is suing Exxon and other fossil fuel companies for engaging in business that threatens Oakland’s future (i.e fossil fuel burning causes sea level rise that will impose costs on Oakland). Oakland’s inconsistency occurs in the municipal bond market. Oakland seeks to borrow a large amount of $ by selling bonds. In the bond risk disclosures, climate change is played down. In this setting, Oakland has a strong incentive to state that it is a low risk because low risk borrowers can borrow at a lower interest rate.

The author of the WSJ asks a simple question; which truth does Oakland believe? Is it over-exaggerating the risk it faces to win the Exxon law suit while simultaneously downplaying a possible risk in the municipal bond market? Did Oakland’s officials anticipate that they could engage in such “mixed messaging”?

In truth, Oakland will need to borrow $ to help it engage in capital upgrades to prepare for sea level rise. The market will set the equilibrium interest rate to reflect the risk. If investors know that coastal cities have an incentive to lie and understate the true risk then new risk providers such as the nascent Jupiter project will emerge to provide this information. To put this simply, when you buy a used car — do you just ask the current owner for her assessment of its quality? Don’t be a sucker, do your homework.

The Exxon lawsuit raises major issues. I understand transaction costs but why aren’t the litigants suing gasoline car makers and gasoline car buyers? This lawsuit is an indirect court induced carbon tax. If the litigants succeed, what would be the economic incidence of this tax? Would Exxon’s profit decline? (More on the legal issues below)

A good debater might argue that the municipal bonds are issued for 30 years and over this time horizon, coastal cities do not face a serious challenge and thus the bond default risk is low. But, as you make these arguments think back in time. 1988 was 30 years ago. Technology has made some progress. By the year 2048, I have a feeling that our technological frontier will have leaped forward to help us to adapt to the new normal. The coastal capital stock will be less durable and we will be prepared.

Note: By the term “durable” in the last sentence, Kahn refers to the possibility of structures in vulnerable places being movable in the face of erosion or flooding. He and Devin Bunten discuss how developers are likely to adapt to localized climate risks in their paper Optimal Real Estate Capital Durability and Localized Climate Change Disaster Risk Devin Bunten and Matthew E. Kahn January 2017
(Board of Governors of the Federal Reserve System, University of Southern California and NBER)

Abstract
The durability of the real estate capital stock could hinder climate change adaptation because past construction anchors the population in beautiful and productive but increasingly-risky coastal areas. However, coastal developers anticipate that their assets face increasing risk and this creates an incentive to seek adaptation strategies. This paper models climate change as a joint process of (1) increasingly destructive storms and (2) a risk of sea-level rise that submerges coastal property. We study how forward-looking developers and real estate investors respond to the new risks along a number of dimensions including their choices of location, capital durability, capital mobility (modular real estate), and maintenance of existing properties. The net effect of such investments is a more resilient urban population.

The above referenced WSJ article is paywalled, but this post by CEI gets at the securities fraud issue: SEC Should Investigate California Municipalities for Climate-Related Securities Fraud

It appears a variety of California municipalities have gotten themselves in hot water. To investors of their bonds, they have claimed that they are unable to predict sea level rise or other climate risks. But they recently filed suit against a variety of oil and gas companies claiming the companies are causing the sea level to rise. The municipalities in their lawsuits give very explicit predictions as to how much they think the sea level will rise.

Today CEI asked the Securities and Exchange Commission to investigate these activities as possible securities fraud. Federal law prohibits deceiving investors through untrue material facts or material omissions. The municipalities claim to the court that they are able to predict these sea level changes. If that is true, then they are deceiving investors. The SEC’s mission is to protect investors from such false statements.

A few examples of the conflicting statements:

  • The City of San Francisco to bond investors: “The City is unable to predict whether sea-level rise or other impacts of climate change or flooding from a major storm will occur, when they may occur.” But to the court, the city predicts “0.3 to as much as 0.8 feet of additional sea level rise.”
  • The City of Oakland to bond investors: “The City is unable to predict when seismic events, fires or other natural events, such as sea rise or other impacts of climate change or flooding from a major storm, could occur, when they may occur.” But to the court, the city predicts “66 inches of sea level rise.”
  • The County of San Mateo to bond investors: “County is unable to predict whether sea-level rise or other impacts of climate change or flooding from a major storm will occur, when they may occur.” But to the court, the county states: “The County anticipates and is planning for significant sea level rise.”
  • The County of Santa Cruz to bond investors states that “may be subject to unpredictable climatic conditions, such as flood.” But to the court, the county states that there is a “98% chance that the County experiences a devastating three-foot flood before the year 2050.”

There are two possible reasons why these municipalities have told the courts different statements than investors. First the municipalities may be trying to get more money from bonds then they would be able to get if they were honest about their true beliefs. For instance, the City of Oakland predicts the costs of “between $22 and $38 billion.” Would the city even be solvent trying to pay those costs? No investor would give their money to a city which expects not to be able to pay them back. If the municipalities were forced to explain what they claim are the expected impacts of climate change to their budget, they would no longer be able to raise as much money from bonds.

The second possible reason is that these municipalities are actually lying to the courts instead of investors by fabricating their predictions of sea level rise. Or perhaps they’re misrepresenting things to both investors and the courts.

Regardless, we hope the SEC can get to the bottom of this.

On the legal flaws with these lawsuits by cities: Is Global Warming A Public Nuisance?

Fear Not For Fiji

Fiji Map from Turtle Airways Seaplanes. Fiji International Airport is at Nadi.

Published this month is an update on sea levels at Fiji, and thankfully the threat level can be dialed way down.  (H/T Tallbloke)  The Research Article:  Our Oceans-Our Future: New Evidence-based Sea Level Records from the Fiji Islands for the Last 500 years Indicating Rotational Eustasy and Absence of a Present Rise in Sea Level by Nils-Axel Mörner, Paleogeophysics & Geodynamics, Stockholm, Sweden. Excerpts with my bolds.

Update Feb. 17 at bottom

Abstract:

Previously, no study in the Fiji Islands had been devoted to the sea level changes of the last 500 years. No serious prediction can be made unless we have a good understanding of the sea level changes today and in the past centuries. Therefore, this study fills a gap, and provides real observational facts to assess the question of present sea level changes.

There is a total absence of data supporting the notion of a present sea level rise; on the contrary all available facts indicate present sea level stability. On the centennial timescale, there was a +70 cm high level in the 16th and 17th centuries, a -50 cm low in the 18th century and a stability (with some oscillations) in the 19th, 20th and early 21st centuries. This is almost identical to the sea level change documented in the Maldives, Bangladesh and Goa (India).

This seems to indicate a mutual driving force. However, the recorded sea level changes are anti-correlated with the major changes in climate during the last 600 years. Therefore, glacial eustasy cannot be the driving force. The explanation seems to be rotational eustasy with speeding-up phases during Grand Solar Minima forcing ocean water masses to the equatorial region, and slowing-down phases during Grand Solar Maxima forcing ocean waster massed from the equator towards the poles.

Background

The Intergovernmental Panel on Climate Change [1] has claimed that sea level is rising and that an additional acceleration is soon to be expected as a function of global warming. This proposition only works if the present warming would be a function of increased CO2 content in the atmosphere (an hypothesis termed AGW from Anthropogenic Global Warming). On a longer-term basis, it seems quite clear, however, that the dominant factor of global changes in temperature is changes in solar variability [2-3]. Regardless of what actually is driving climate change and sea level changes, the proposition of a rapidly rising sea level grew to a mantra in media and politics. This initiated a flood of papers rather based on models and statistics, however, than on actual field observations.

The Fiji government will be the chair-nation at the next international climate conference; COP23 in Bonn in November 2017 [4].  This paper represents a detailed analysis of available field  observation on sea level changes in the Fiji Islands over the last 500 Years.

Figure 1.

Sea level changes as documented in the Yasawa Islands, Fiji, composed of 3 main segments: a high level (1), a low level (2) and a more or less constant level (3), which might be subdivided in an early high level, a main level just above the present level and a lowering to the present level generating microatoll growth in the last 60 years (based on data from [13]). (Subdivisions shown in Figure 3 below)

Figure 2.

The long-term changes during the last 500 years – i.e. a high, a low and a present level – is recorded in the Maldives [16], in Bangladesh [17-18] and in Goa, India, [15,18], as illustrated in Figure 3. A present long-term stability is also recorded in Qatar [19].

Figure 3.

The general agreement between the observed sea level changes in Fiji during the last 500 years, and those recorded in the three Indian Ocean sites: the Maldives, Goa and Bangladesh is striking, which is a very strong (even conclusive) argument that the recorded sea level change are of regional eustatic origin [20].

All four records show a high in the 17th century (which was a period of Little Ice Age conditions), a low in the 18th century (which was a period nearly as warm as today) and a high in the early 19th century (which was the last period of Little Ice Age conditions). This means that the Figure 3 sea level changes are almost directly opposite to the general changes in global climate. Consequently, the eustatic changes recorded cannot refer to glacial eustasy, but must be understood in terms of rotational eustasy.

Figure 4

This calls for some explanation. The idea that oceanic water masses may be dislocated horizontally by rotational–dynamical forces was launched in 1984 [21] and more extensively presented in 1988 [22].  Later, is was proposed that changes in the Solar Wind strongly affects the Earth’s rate of rotation [23] (with a deeper analysis in [24]) leading to a beat in the Gulf Stream with alternations between a dominant northeastward flow during rotational slowing-down periods of Grand Solar Maxima, and dominant east-south eastward flow during rotational seeding-up periods of Grand Solar Minima [25].

The sea level changes in the Indian Ocean, were therefore proposed [26,15] to be driven by rotational eustasy; i.e. the interchanges of water masses between high-latitudes and the equatorial region as a function of the speeding-up during Grand Solar Minima with Little Ice Age conditions and slowing down during Grand Solar Maxima with generally warm climatic conditions.

In the post-Little Ice Ages period from 1850 up to 1930-1940 there was a global glacial eustatic rise in the order of 11 cm [28]. For the rest of the last 500 years, rotational eustasy seems to have been the dominant factor as documented in Figure 3 and illustrated in Figure 4.

CONCLUSIONS

(1)– sea level is not at all in a rising mode in the Fiji area
(2) – on the contrary it has remained stable in the last 50-70 years
(3) – rotational eustasy has dominated the sea level changes in Fiji
(4) – the same changes are recorded in the Indian Ocean

Previously, the changes in sea level during the last 500 years were not covered by adequate research in the Fiji Islands. The present paper provides a detailed analyses documenting a +70 cm high level in the 16th and 17th centuries, a -50 cm low in the 18th century and a period of virtually stability in the 19th to early 21st centuries, the last period of which may be subdivided into an early 19th century +30 cm high, a long period of stability and a 10-20 cm fall in sea level in the last 60 years forcing corals to grew into microatolls under strictly stable sea level conditions. This means there are no traces of a present rise in sea level; on the contrary: full stability.

The long-term trend is almost identical to the trends documented in the Indian Ocean in the Maldives, Goa and Bangladesh. This implies a eustatic origin of the changes recorded; not of glacial eustatic origin, however, but of rotational eustatic origin. The rotational eustatic changes in sea level are driven by the alternations of speeding-up during Grand Solar Minima (the Maunder and Dalton Solar Minima) forcing water towards the equator, and slowing-down during Grand Solar Maxima (in the 18th century, around 1930-1940 and at about 1970-2000).

Update Feb. 17

Prompted by a question from hunter, I found this informative recent letter on this topic (my bolds):

From Reply from Nils-Axel Mörner on the problems of estimating Future Sea Level Changes as asked by Albert Parker in letter of January 2, 2018

There are physical frames to consider. Ice melting requires time and heating, strictly bounded by physical laws. At the largest climatic jump in the last 20,000 years – viz. at the Pleistocene/Holocene boundary about 11,000 years BP – ice melted under extreme temperature forcing; still sea level only rose at a rate of about 10 mm/yr (or just a little more if one would consider more extreme eustatic reconstructions). Today, under interglacial climatic conditions with all the glacial ice caps gone climate forcing can only rise global sea level by a fraction of the 11,000 BP rate, which in comparison with the values of Garner et al. [1] would imply:
well below 0.4 m at 2050 instead of +0.6 m
well below 0.9 m at 2100 instead of +2.6 m
well below 2.9 m at 2300 instead of +17.5 m

Consequently, the values given by Garner et al. [1] violate physical laws and common glaciological knowledge. Therefore, their values must not be set as standard in coastal planning (point 2 above).

The mean sea level rise over the last 125 years is +0.81 ±0.18 mm/yr. At Stockholm in Sweden, the absolute uplift over the last 3000 years is strictly measured at +4.9 mm/yr. The mean tide-gauge change is -3.8 mm/yr, giving a eustatic component of +1.1 mm/yr for the last 150 years. In Amsterdam, the long-term subsidence is known as +0.4 mm/yr. The Amsterdam/Ijmuiden stations record a relative rise of +1.5 mm/yr, which give a eustatic component of +1.1 mm/yr.

Global Loading Adjustment has been widely used in order to estimate global sea level changes. Obviously, the globe must adjust its rate of rotation and geoid relief in close agreement with the glacial eustatic rise in sea level after the last Ice Age. The possible internal glacial loading adjustment is much more complicated, and even questionable, however.

Direct coastal analysis of morphology, stratigraphy, biological criteria, coastal dynamics, etc usually offers the far best means of recording the on-going sea level variations in a correct and meaningful way. It calls for hard work in the field and deep knowledge in a number of subjects. We have, very successfully, applied it in the Maldives, in Bangladesh, in Goa in southern India, and now also in the Fiji Islands. In all these sites, direct coastal analyses indicate full eustatic stability over the last 50-70 years, and long-term variations over the last 500 years that are consistent with “rotational eustasy” or “Global Solar Cycle Oscillations” (GSCO).

 

Climate Poppycock

Definition
pop·py·cock ˈpäpēˌkäk/informal noun meaning nonsense.
Synonyms: nonsense, rubbish, claptrap, balderdash, blather, moonshine, garbage;

Origin: mid 19th century: from Dutch dialect pappekak, from pap ‘soft’ + kak ‘dung.’

This is obviously the linguistically correct term for most of the articles on climate published in the mainstream media. And it serves to describe perfectly the output from alarmist activists.

Exhibit A is provided by Ken Ward, leader of the “valve turners” and defendant facing felony charges in Washington state.

This week he succeeded to convince a juror to refuse him conviction because in his defense he “put up a map of Skagit County, about a third of which will be under water in 2050.”

I call “Poppycock.”  A study from U. of Washington came up with a range of 1″ to 18″ SLR by 2050 for coastal Washington state. Not only will that not flood the place, the range tells you they are shooting in the dark.

http://www.cses.washington.edu/db/pdf/moteetalslr579.pdf

For a deeper look into this phenomenon, see Post-Truth Climatism

Data vs. Models #2: Droughts and Floods

This post compares observations with models’ projections regarding variable precipitation across the globe.

There have been many media reports that global warming produces more droughts and more flooding. That is, the models claim that dry places will get drier and wet places will get wetter because of warmer weather. And of course, the models predict future warming because CO2 continues to rise, and the model programmers believe only warming, never cooling, can be the result.

Now we have a recent data-rich study of global precipitation patterns and the facts on the ground lead the authors to a different conclusion.

Stations experiencing low, moderate and heavy annual precipitation did not show very different precipitation trends. This indicates deserts or jungles are neither expanding nor shrinking due to changes in precipitation patterns. It is therefore reasonable to conclude that some caution is warranted about claiming that large changes to global precipitation have occurred during the last 150 years.

The paper (here) is:

Changes in Annual Precipitation over the Earth’s Land Mass excluding Antarctica from the 18th century to 2013 W. A. van Wijngaarden, Journal of Hydrology (2015)

Study Scope

Fig. 1. Locations of stations examined in this study. Red dots show the 776 stations having 100–149 years of data, green dots the 184 stations having 150–199 years of data and blue dots the 24 stations having more than 200 years of data.

Fig. 1. Locations of stations examined in this study. Red dots show the 776 stations having 100–149 years of data, green dots the 184 stations having 150–199 years of data
and blue dots the 24 stations having more than 200 years of data.

This study examined the percentage change of nearly 1000 stations each having monthly totals of daily precipitation measurements for over a century. The data extended from 1700 to 2013, although most stations only had observations available beginning after 1850. The percentage change in precipitation relative to that occurring during 1961–90 was plotted for various countries as well as the continents excluding Antarctica. 

There are year to year as well as decadal fluctuations of precipitation that are undoubtedly influenced by effects such as the El Nino Southern Oscillation (ENSO) (Davey et al., 2014) and the North Atlantic Oscillation (NAO) (Lopez-Moreno et al., 2011). However, most trends over a prolonged period of a century or longer are consistent with little precipitation change.Similarly, data plotted for a number of countries and or regions thereof that each have a substantial number of stations, show few statistically significant trends.

Fig. 8. Effect of total precipitation on percentage precipitation change relative to 1961–90 for stations having total annual precipitation (a) 1000 mm. The red curve is the moving 5 year average while the blue curve shows the number of stations. Considering only years having at least 10 stations reporting data, the trends in units of % per century are: (a) 1.4 ± 2.8 during 1854–2013, (b) 0.9 ± 1.1 during 1774–2013 and (c) 2.4 ± 1.2 during 1832–2013.

Fig. 8. Effect of total precipitation on percentage precipitation change relative to 1961–90 for stations having total annual precipitation (a) less than 500 mm, (b) 500 to 1000 mm, (c) more than 1000 mm. The red curve is the moving 5 year average while the blue curve shows the number of stations. Considering only years having at least 10 stations reporting data, the trends in units of % per century are: (a) 1.4 ± 2.8 during 1854–2013, (b) 0.9 ± 1.1 during 1774–2013 and (c) 2.4 ± 1.2 during 1832–2013.

Fig. 8 compares the percentage precipitation change for dry stations (total precipitation <500 mm), stations experiencing moderate rainfall (between 500 and 1000 mm) and wet stations (total precipitation >1000 mm). There is no dramatic difference. Hence, one cannot conclude that dry areas are becoming drier nor wet areas wetter.

Summary

The percentage annual precipitation change relative to 1961–90 was plotted for 6 continents; as well as for stations at different latitudes and those experiencing low, moderate and high annual precipitation totals. The trends for precipitation change together with their 95% confidence intervals were found for various periods of time. Most trends exhibited no clear precipitation change. The global changes in precipitation over the Earth’s land mass excluding Antarctica relative to 1961–90 were estimated to be:

Periods % per Century
 1850–1900 1.2 ± 1.7
 1900–2000 2.6 ± 2.5
 1950–2000 5.4 ± 8.1

A change of 1% per century corresponds to a precipitation change of 0.09 mm/year or 9 mm/century.

As a background for how precipitation is distributed around the world, see the post: Here Comes the Rain Again. Along with temperatures, precipitation is the other main determinant of climates, properly understood as distinctive local and regional patterns of weather.  As the above study shows, climate change from precipitation change is vanishingly small.

Data vs. Models #1 was Arctic Warming.