Laptev Refreezes in 13 Days

Click on image to enlarge.

Is Arctic Ice recovering?  Let us count the ways.  In just the last 13 days, Laptev Sea doubled its ice extent from 400k km2 to 870k km2.  That is 97% of its March maximum, leaving only 30k km2 to fill in absolutely.

Then we can observe the Canadian Arctic Archipelago (CAA) adding 200k km2 over the same time frame.

Click on image to enlarge.

The Laptev wall of ice is in place, and the Northwest Passage is full of ice.  The Arctic ocean is now effectively divided into two parts, Pacific and Atlantic sides, with refreezing underway independently.

Update: October 16 Snow and Ice

Yesterday at AER Dr. Judah Cohen provided his Arctic Oscillation and Polar Vortex Analysis and Forecasts biweekly report and outlook regarding the arctic oscillation and the coming winter in Northern Hemisphere. Excerpts with my bolds.

  • As is often the case, the current positive AO is associated with a relatively mild weather pattern across the NH continents including Europe and much of North America.
  • However over the next two weeks with the predicted overall negative trend in the AO a concomitant cooling trend is predicted across the NH continents including the British Isles and Western Europe but especially the Eastern United States (US).
  • Across East Asia troughing will allow a series of fronts to swing through the region keeping temperatures variable but overall close to seasonable.
  • Looking ahead to this upcoming winter, in my opinion both below normal Arctic sea ice and above normal Siberian snow cover so far this month favor more severe winter weather especially mid and late winter across the NH mid-latitudes. Though it is still early and there is much uncertainty in predictions of winter weather.

The flow across the NH is currently mostly zonal especially across North America and this is resulting in an overall mild weather pattern including Europe and the US. The exception to the zonal flow is a block over the Laptev Sea resulting in troughing/negative geopotential height anomalies over both Western and Eastern Asia and colder temperatures.

Expanding Eurasian snow cover and Arctic ice extent October 1 to 16, 2017. Watch the ice growing toward the Siberian snow. Also at the top note ice growing toward Canadian snow cover.

Siberian snow cover has advanced at a relatively rapid pace so far this fall, which has been the recent trend. However snow cover extent this October is so far lagging the pace of last October. My, along with my colleagues and others, research have shown that extensive Siberian snow cover in the fall favors a trough across East Asia with a ridge to the west near the Urals. This atmospheric circulation pattern favors more active poleward heat flux, a weaker PV and cold temperatures across the NH.

Strong negative departures in the Barents-Kara Seas favors cold temperatures in Asia while strong negative departures near Greenland and/or the Beaufort Sea favor cold temperatures in eastern North America. However sea ice is currently more extensive in the Barents-Kara-Laptev Seas than last year at this time and even more than two years ago. I believe that low sea ice in the Barents Kara sea the past two winters helped anchor blocking in the region that favored cold temperatures in Eurasia relative to North America. That same forcing may not be as strong for the upcoming winter.

I would conclude that the three factors that I consider favorable for severe winter weather increased atmospheric blocking in the fall, more extensive Siberian snow cover and low Arctic sea ice have become the norm more than the exception over the past decade. I do believe that the lack of variability in these three factors, likely reduces their utility in winter predictions.

From Post Natural Climate Factors: Snow 

Previously I posted an explanation by Dr. Judah Cohen regarding a correlation between autumn Siberian snow cover and the following winter conditions, not only in the Arctic but extending across the Northern Hemisphere. More recently, in looking into Climate Model Upgraded: INMCM5, I noticed some of the scientists were also involved in confirming the importance of snow cover for climate forecasting. Since the poles function as the primary vents for global cooling, what happens in the Arctic in no way stays in the Arctic. This post explores data suggesting changes in snow cover drive some climate changes.

The Snow Cover Climate Factor

The diagram represents how Dr. judah Cohen pictures the Northern Hemisphere wintertime climate system.  He leads research regarding Arctic and NH weather patterns for AER.

cohen-schematic2

Dr. Cohen explains the mechanism in this diagram.

Conceptual model for how fall snow cover modifies winter circulation in both the stratosphere and the troposphere–The case for low snow cover on left; the case for extensive snow cover on right.

1. Snow cover increases rapidly in the fall across Siberia, when snow cover is above normal diabatic cooling helps to;
2. Strengthen the Siberian high and leads to below normal temperatures.
3. Snow forced diabatic cooling in proximity to high topography of Asia increases upward flux of energy in the troposphere, which is absorbed in the stratosphere.
4. Strong convergence of WAF (Wave Activity Flux) indicates higher geopotential heights.
5. A weakened polar vortex and warmer down from the stratosphere into the troposphere all the way to the surface.
6. Dynamic pathway culminates with strong negative phase of the Arctic Oscillation at the surface.

From Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere
Coupling and Their Potential Use in Seasonal to Decadal Climate Predictions by Judah Cohen.

Variations in Siberian snow cover October (day 304) 2004 to 2016. Eurasian snow charts from IMS.

Observations of the Snow Climate Factor

The animation above shows from remote sensing that Eurasian snow cover fluctuates significantly from year to year, taking the end of October as a key indicator. Snowfall in 2016 was especially early and extensive, 2017 similar but slightly less at this point.

For several decades the IMS snow cover images have been digitized to produce a numerical database for NH snow cover, including area extents for Eurasia. The NOAA climate data record of Northern Hemisphere snow cover extent, Version 1, is archived and distributed by NCDC’s satellite Climate Data Record Program. The CDR is forward processed operationally every month, along with figures and tables made available at Rutgers University Global Snow Lab.

This first graph shows the snow extents of interest in Dr. Cohen’s paradigm. The Autumn snow area in Siberia is represented by the annual Eurasian averages of the months of October and November (ON). The following NH Winter is shown as the average snow area for December, January and February (DJF). Thus the year designates the December of that year plus the first two months of the next year.

Notes: NH snow cover minimum was 1981, trending upward since.  Siberian autumn snow cover was lowest in 1989, increasing since then.  Autumn Eurasian snow cover is about 1/3 of Winter NH snow area. Note also that fluctuations are sizable and correlated.

The second graph presents annual anomalies for the two series, each calculated as the deviation from the mean of its entire time series. Strikingly, the Eurasian Autumn flux is on the same scale as total NH flux, and closely aligned. While NH snow cover declined a few years prior to 2016, Eurasian snow is trending upward strongly.  If Dr. Cohen is correct, NH snowfall will follow. The linear trend is slightly positive, suggesting that fears of children never seeing snowfall have been exaggerated. The Eurasian trend line (not shown) is almost the same.

What About Winter 2017-2018?

These data confirm that Dr. Cohen and colleagues are onto something. Here are excerpts from his October 2 outlook for the upcoming season AER. (my bolds)

The main block/high pressure feature influencing Eurasian weather is currently centered over the Barents-Kara Seas and is predicted to first weaken and then strengthen over the next two weeks.

Blocking in the Barents-Kara Seas favors troughing/negative geopotential height anomalies and cool temperatures downstream over Eurasia but especially Central and East Asia. The forecast for the next two weeks across Central Asia is for continuation of overall below normal temperatures and new snowfall.

Currently the largest negative anomalies in sea ice extent are in the Chukchi and Beaufort Seas but that will change over the next month or so during the critical months of November-February. In my opinion low Arctic sea ice favors a more severe winter but not necessarily hemisphere-wide and depends on the regions of the strongest anomalies. Strong negative departures in the Barents-Kara Seas favors cold temperatures in Asia while strong negative departures near Greenland and/or the Beaufort Sea favor cold temperatures in eastern North America.

Siberian snow cover is advancing quickly relative to climatology and is on a pace similar to last year at this time. My, along with my colleagues and others, research has shown that extensive Siberian snow cover in the fall favors a trough across East Asia with a ridge to the west near the Urals. The atmospheric circulation pattern favors more active poleward heat flux, a weaker PV and cold temperatures across the NH. It is very early in the snow season but recent falls have been snowy across Siberia and therefore I do expect another upcoming snowy fall across Siberia.

Summary

In summary the three main predictors that I follow in the fall months most closely, the presence or absence of high latitude blocking, Arctic sea ice extent and Siberian snow cover extent all point towards a more severe winter across the continents of the NH.

Uh oh.  Now where did I put away my long johns?

Arctic Ice Surges Mid October

Click on image to enlarge.

Consider the refreezing during the first half of October through yesterday, adding an average of 96k km2 per day.   On the left side Laptev Sea has filled in, and just below it East Siberian Sea is also growing fast ice from the shore to meet refreezing drift ice. At the top Kara, Barents and Greenland seas are all growing ice.  At the bottom, Canadian Archipelago is now full of ice.

The graph compares extents over the first 15 days of October.
2017 has reached 6.6 M km2, 300k km2 above the 10 year average, 930k km2 more than 2016.  2007 lags 1.2M km2 behind, and 2012 remains 1.8M km2 lower than 2017.  SII is showing similar ice gains in October.

The Table below shows where ice is located on day 288 in regions of the Arctic ocean. 10 year average comes from 2007 through 2016 inclusive.

Region 2017288 Day 288
Average
2017-Ave. 2007288 2017-2007
 (0) Northern_Hemisphere 6645242 6352329 292913 5431350 1213892
 (1) Beaufort_Sea 622905 719153 -96249 796103 -173198
 (2) Chukchi_Sea 180459 295507 -115048 83354 97105
 (3) East_Siberian_Sea 520320 561740 -41420 30003 490317
 (4) Laptev_Sea 812165 456507 355658 512495 299671
 (5) Kara_Sea 234367 147704 86664 152144 82223
 (6) Barents_Sea 31340 46071 -14731 21459 9881
 (7) Greenland_Sea 212483 354693 -142209 431989 -219506
 (8) Baffin_Bay_Gulf_of_St._Lawrence 148173 85149 63024 86610 61563
 (9) Canadian_Archipelago 714792 570585 144207 447438 267354
 (10) Hudson_Bay 13452 11416 2036 1936 11515
 (11) Central_Arctic 3153628 3102335 51292 2866544 287084

On the Pacific side are deficits to average in BCE (Barents, Chukchi, East Siberian), more than offset by a massive surplus in Laptev, plus Kara next door.  Greenland Sea ice is below average, but again offset by surpluses in CAA, Baffin Bay and Central Arctic.

In recent years, October has seen some rapid recoveries of Arctic ice extents.  But this year may become something special.  With the early onset of Siberian snow cover and the resulting surface cooling, ice is roaring back, especially on the Asian side.

Halloween is Coming!

Footnote

Some people unhappy with the higher amounts of ice extent shown by MASIE continue to claim that Sea Ice Index is the only dataset that can be used. This is false in fact and in logic. Why should anyone accept that the highest quality picture of ice day to day has no shelf life, that one year’s charts can not be compared with another year? Researchers do this analysis, including Walt Meier in charge of Sea Ice Index. That said, I understand his interest in directing people to use his product rather than one he does not control. As I have said before:

MASIE is rigorous, reliable, serves as calibration for satellite products, and uses modern technologies to continue the long and honorable tradition of naval ice charting.  More on this at my post Support MASIE Arctic Ice Dataset

Footnote on MASIE Data Sources: 

National Ice Center (NIC) produces ice charts using the Interactive Multisensor Snow and Ice Mapping System (IMS). From the documentation, the multiple sources feeding IMS are:

Platform(s) AQUA, DMSP, DMSP 5D-3/F17, GOES-10, GOES-11, GOES-13, GOES-9, METEOSAT, MSG, MTSAT-1R, MTSAT-2, NOAA-14, NOAA-15, NOAA-16, NOAA-17, NOAA-18, NOAA-N, RADARSAT-2, SUOMI-NPP, TERRA

Sensor(s): AMSU-A, ATMS, AVHRR, GOES I-M IMAGER, MODIS, MTSAT 1R Imager, MTSAT 2 Imager, MVIRI, SAR, SEVIRI, SSM/I, SSMIS, VIIRS

Historical Summary: IMS Daily Northern Hemisphere Snow and Ice Analysis

The National Oceanic and Atmospheric Administration / National Environmental Satellite, Data, and Information Service (NOAA/NESDIS) has an extensive history of monitoring snow and ice coverage.Accurate monitoring of global snow/ice cover is a key component in the study of climate and global change as well as daily weather forecasting.

The Polar and Geostationary Operational Environmental Satellite programs (POES/GOES) operated by NESDIS provide invaluable visible and infrared spectral data in support of these efforts. Clear-sky imagery from both the POES and the GOES sensors show snow/ice boundaries very well; however, the visible and infrared techniques may suffer from persistent cloud cover near the snowline, making observations difficult (Ramsay, 1995). The microwave products (DMSP and AMSR-E) are unobstructed by clouds and thus can be used as another observational platform in most regions. Synthetic Aperture Radar (SAR) imagery also provides all-weather, near daily capacities to discriminate sea and lake ice. With several other derived snow/ice products of varying accuracy, such as those from NCEP and the NWS NOHRSC, it is highly desirable for analysts to be able to interactively compare and contrast the products so that a more accurate composite map can be produced.

The Satellite Analysis Branch (SAB) of NESDIS first began generating Northern Hemisphere Weekly Snow and Ice Cover analysis charts derived from the visible satellite imagery in November, 1966. The spatial and temporal resolutions of the analysis (190 km and 7 days, respectively) remained unchanged for the product’s 33-year lifespan.

As a result of increasing customer needs and expectations, it was decided that an efficient, interactive workstation application should be constructed which would enable SAB to produce snow/ice analyses at a higher resolution and on a daily basis (~25 km / 1024 x 1024 grid and once per day) using a consolidated array of new as well as existing satellite and surface imagery products. The Daily Northern Hemisphere Snow and Ice Cover chart has been produced since February, 1997 by SAB meteorologists on the IMS.

Another large resolution improvement began in early 2004, when improved technology allowed the SAB to begin creation of a daily ~4 km (6144×6144) grid. At this time, both the ~4 km and ~24 km products are available from NSIDC with a slight delay. Near real-time gridded data is available in ASCII format by request.

In March 2008, the product was migrated from SAB to the National Ice Center (NIC) of NESDIS. The production system and methodology was preserved during the migration. Improved access to DMSP, SAR, and modeled data sources is expected as a short-term from the migration, with longer term plans of twice daily production, GRIB2 output format, a Southern Hemisphere analysis, and an expanded suite of integrated snow and ice variable on horizon.

http://www.natice.noaa.gov/ims/ims_1.html

 

 

Arctic Ice 1M km2 Added in 10 days

Click on image to enlarge.

Consider the refreezing during the first 10 days of October through yesterday, adding an average of 100k km2 per day.   On the left side Laptev Sea is filling in, and just below it East Siberian Sea is also growing fast ice from the shore to meet refreezing drift ice. At the top Kara, Barents and Greenland seas are all growing ice.  At the bottom, Canadian Archipelago is now full of ice.

In recent years, October has seen some rapid recoveries of Arctic ice extents.  But this year may become something special.  With the early onset of Siberian snow cover and the resulting surface cooling, ice is roaring back, especially on the Asian side.  From the last decade, only 2013 and 2014 had higher ice extents on day 283.  2017 has matched the refreezing rate of those two years, but started the month lower.

The graph compares extents over the first 10 days of October.
2017 has reached 6.2 M km2, 480k km2 above the 10 year average, 830k km2 more than 2016.  2007 falls 1.3M km2 behind, and 2012 remains 1.7M km2 less than 2017.  SII is showing similar ice gains in October.

Halloween is Coming!

Footnote

Some people unhappy with the higher amounts of ice extent shown by MASIE continue to claim that Sea Ice Index is the only dataset that can be used. This is false in fact and in logic. Why should anyone accept that the highest quality picture of ice day to day has no shelf life, that one year’s charts can not be compared with another year? Researchers do this analysis, including Walt Meier in charge of Sea Ice Index. That said, I understand his interest in directing people to use his product rather than one he does not control. As I have said before:

MASIE is rigorous, reliable, serves as calibration for satellite products, and uses modern technologies to continue the long and honorable tradition of naval ice charting.  More on this at my post Support MASIE Arctic Ice Dataset

Footnote on MASIE Data Sources: 

National Ice Center (NIC) produces ice charts using the Interactive Multisensor Snow and Ice Mapping System (IMS). From the documentation, the multiple sources feeding IMS are:

Platform(s) AQUA, DMSP, DMSP 5D-3/F17, GOES-10, GOES-11, GOES-13, GOES-9, METEOSAT, MSG, MTSAT-1R, MTSAT-2, NOAA-14, NOAA-15, NOAA-16, NOAA-17, NOAA-18, NOAA-N, RADARSAT-2, SUOMI-NPP, TERRA

Sensor(s): AMSU-A, ATMS, AVHRR, GOES I-M IMAGER, MODIS, MTSAT 1R Imager, MTSAT 2 Imager, MVIRI, SAR, SEVIRI, SSM/I, SSMIS, VIIRS

Historical Summary: IMS Daily Northern Hemisphere Snow and Ice Analysis

The National Oceanic and Atmospheric Administration / National Environmental Satellite, Data, and Information Service (NOAA/NESDIS) has an extensive history of monitoring snow and ice coverage.Accurate monitoring of global snow/ice cover is a key component in the study of climate and global change as well as daily weather forecasting.

The Polar and Geostationary Operational Environmental Satellite programs (POES/GOES) operated by NESDIS provide invaluable visible and infrared spectral data in support of these efforts. Clear-sky imagery from both the POES and the GOES sensors show snow/ice boundaries very well; however, the visible and infrared techniques may suffer from persistent cloud cover near the snowline, making observations difficult (Ramsay, 1995). The microwave products (DMSP and AMSR-E) are unobstructed by clouds and thus can be used as another observational platform in most regions. Synthetic Aperture Radar (SAR) imagery also provides all-weather, near daily capacities to discriminate sea and lake ice. With several other derived snow/ice products of varying accuracy, such as those from NCEP and the NWS NOHRSC, it is highly desirable for analysts to be able to interactively compare and contrast the products so that a more accurate composite map can be produced.

The Satellite Analysis Branch (SAB) of NESDIS first began generating Northern Hemisphere Weekly Snow and Ice Cover analysis charts derived from the visible satellite imagery in November, 1966. The spatial and temporal resolutions of the analysis (190 km and 7 days, respectively) remained unchanged for the product’s 33-year lifespan.

As a result of increasing customer needs and expectations, it was decided that an efficient, interactive workstation application should be constructed which would enable SAB to produce snow/ice analyses at a higher resolution and on a daily basis (~25 km / 1024 x 1024 grid and once per day) using a consolidated array of new as well as existing satellite and surface imagery products. The Daily Northern Hemisphere Snow and Ice Cover chart has been produced since February, 1997 by SAB meteorologists on the IMS.

Another large resolution improvement began in early 2004, when improved technology allowed the SAB to begin creation of a daily ~4 km (6144×6144) grid. At this time, both the ~4 km and ~24 km products are available from NSIDC with a slight delay. Near real-time gridded data is available in ASCII format by request.

In March 2008, the product was migrated from SAB to the National Ice Center (NIC) of NESDIS. The production system and methodology was preserved during the migration. Improved access to DMSP, SAR, and modeled data sources is expected as a short-term from the migration, with longer term plans of twice daily production, GRIB2 output format, a Southern Hemisphere analysis, and an expanded suite of integrated snow and ice variable on horizon.

http://www.natice.noaa.gov/ims/ims_1.html

 

 

October Arctic Surprise

Click on image to enlarge.

In recent years, October has seen some rapid recoveries of Arctic ice extents.  But this year may become something special.  With the early onset of Siberian snow cover and the resulting surface cooling, ice is roaring back, especially on the Asian side.  Consider the refreezing during the last 11 days through yesterday.

The graph compares extents over the last 10 days.

2017 has reached 5.7M km2, 460k km2 more than the strong 2016 recovery, now tracking the 10 year average.  2007 remains 1.1M km2 behind, and 2012 is 1.7M km2 less than 2017.  SII is showing similar ice gains in October.

Halloween is Coming!

Footnote

Some people unhappy with the higher amounts of ice extent shown by MASIE continue to claim that Sea Ice Index is the only dataset that can be used. This is false in fact and in logic. Why should anyone accept that the highest quality picture of ice day to day has no shelf life, that one year’s charts can not be compared with another year? Researchers do this analysis, including Walt Meier in charge of Sea Ice Index. That said, I understand his interest in directing people to use his product rather than one he does not control. As I have said before:

MASIE is rigorous, reliable, serves as calibration for satellite products, and uses modern technologies to continue the long and honorable tradition of naval ice charting.  More on this at my post Support MASIE Arctic Ice Dataset

 

 

Natural Climate Factors: Snow

Variations in Siberian snow cover October (day 304) 2004 to 2016. Eurasian snow charts from IMS.

Previously I posted an explanation by Dr. Judah Cohen regarding a correlation between autumn Siberian snow cover and the following winter conditions, not only in the Arctic but extending across the Northern Hemisphere. More recently, in looking into Climate Model Upgraded: INMCM5, I noticed some of the scientists were also involved in confirming the importance of snow cover for climate forecasting. Since the poles function as the primary vents for global cooling, what happens in the Arctic in no way stays in the Arctic. This post explores data suggesting changes in snow cover drive some climate changes.

The Snow Cover Climate Factor

The diagram represents how Dr. judah Cohen pictures the Northern Hemisphere wintertime climate system.  He leads research regarding Arctic and NH weather patterns for AER.

cohen-schematic2

Dr. Cohen explains the mechanism in this diagram.

Conceptual model for how fall snow cover modifies winter circulation in both the stratosphere and the troposphere–The case for low snow cover on left; the case for extensive snow cover on right.

1. Snow cover increases rapidly in the fall across Siberia, when snow cover is above normal diabatic cooling helps to;
2. Strengthen the Siberian high and leads to below normal temperatures.
3. Snow forced diabatic cooling in proximity to high topography of Asia increases upward flux of energy in the troposphere, which is absorbed in the stratosphere.
4. Strong convergence of WAF (Wave Activity Flux) indicates higher geopotential heights.
5. A weakened polar vortex and warmer down from the stratosphere into the troposphere all the way to the surface.
6. Dynamic pathway culminates with strong negative phase of the Arctic Oscillation at the surface.

From Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere
Coupling and Their Potential Use in Seasonal to Decadal Climate Predictions by Judah Cohen.

Observations of the Snow Climate Factor

The animation at the top shows from remote sensing that Eurasian snow cover fluctuates significantly from year to year, taking the end of October as a key indicator.

For several decades the IMS snow cover images have been digitized to produce a numerical database for NH snow cover, including area extents for Eurasia. The NOAA climate data record of Northern Hemisphere snow cover extent, Version 1, is archived and distributed by NCDC’s satellite Climate Data Record Program. The CDR is forward processed operationally every month, along with figures and tables made available at Rutgers University Global Snow Lab.

This first graph shows the snow extents of interest in Dr. Cohen’s paradigm. The Autumn snow area in Siberia is represented by the annual Eurasian averages of the months of October and November (ON). The following NH Winter is shown as the average snow area for December, January and February (DJF). Thus the year designates the December of that year plus the first two months of the next year.

Notes: NH snow cover minimum was 1981, trending upward since.  Siberian autumn snow cover was lowest in 1989, increasing since then.  Autumn Eurasian snow cover is about 1/3 of Winter NH snow area. Note also that fluctuations are sizable and correlated.

The second graph presents annual anomalies for the two series, each calculated as the deviation from the mean of its entire time series. Strikingly, the Eurasian Autumn flux is on the same scale as total NH flux, and closely aligned. While NH snow cover declined a few years prior to 2016, Eurasian snow is trending upward strongly.  If Dr. Cohen is correct, NH snowfall will follow. The linear trend is slightly positive, suggesting that fears of children never seeing snowfall have been exaggerated. The Eurasian trend line (not shown) is almost the same.

What About Winter 2017-2018?

These data confirm that Dr. Cohen and colleagues are onto something. Here are excerpts from his October 2 outlook for the upcoming season AER. (my bolds)

The main block/high pressure feature influencing Eurasian weather is currently centered over the Barents-Kara Seas and is predicted to first weaken and then strengthen over the next two weeks.

Blocking in the Barents-Kara Seas favors troughing/negative geopotential height anomalies and cool temperatures downstream over Eurasia but especially Central and East Asia. The forecast for the next two weeks across Central Asia is for continuation of overall below normal temperatures and new snowfall.

Currently the largest negative anomalies in sea ice extent are in the Chukchi and Beaufort Seas but that will change over the next month or so during the critical months of November-February. In my opinion low Arctic sea ice favors a more severe winter but not necessarily hemisphere-wide and depends on the regions of the strongest anomalies. Strong negative departures in the Barents-Kara Seas favors cold temperatures in Asia while strong negative departures near Greenland and/or the Beaufort Sea favor cold temperatures in eastern North America.

Siberian snow cover is advancing quickly relative to climatology and is on a pace similar to last year at this time. My, along with my colleagues and others, research has shown that extensive Siberian snow cover in the fall favors a trough across East Asia with a ridge to the west near the Urals. The atmospheric circulation pattern favors more active poleward heat flux, a weaker PV and cold temperatures across the NH. It is very early in the snow season but recent falls have been snowy across Siberia and therefore I do expect another upcoming snowy fall across Siberia.

Summary

In summary the three main predictors that I follow in the fall months most closely, the presence or absence of high latitude blocking, Arctic sea ice extent and Siberian snow cover extent all point towards a more severe winter across the continents of the NH.

Uh oh.  Now where did I put away my long johns?

Overachieving September Arctic Ice

September daily extents are now fully reported and the 2017 September monthly results can be compared with years of the previous decade.  MASIE showed 2017 exceeded 4.8M km2  and SII was close behind, also reaching 4.8M for the month.  The 11 year linear trend is more upward for MASIE, mainly due to 2008 and 2009 reported higher in SII.  In either case, one can easily see the Arctic ice extents since 2007 have not declined and are now 500k km2 higher.

In August, 4.5M km2 was the median estimate of the September monthly average extent from the SIPN (Sea Ice Prediction Network) who use the reports from SII (Sea Ice Index), the NASA team satellite product from passive microwave sensors.

The graph below shows September comparisons through day 273 (Sept. 30).Note that starting day 260 2016 had begun its remarkable recovery, and is now well above the 10 year average, nearly matching 2017. Meanwhile 2007 is 1.1M km2 behind and the Great Arctic Cyclone year of 2012 is 1.4M km2 less than 2017.  Note also that SII is currently matching MASIE.

The narrative from activist ice watchers is along these lines:  2017 minimum is not especially low, but it is very thin.  “The Arctic is on thin ice.”  They are basing that notion on PIOMAS, a model-based estimate of ice volumes, combining extents with estimated thickness.  That technology is not mature, and in any case refers to the satellite era baseline, which began in 1979.

The formation of ice this year does not appear thin, since it is concentrated in the central Arctic.  For example, Consider how Laptev and East Siberian seas together added 180k km2 in the just the last ten days:

Click on image to enlarge.

The table shows ice extents in the regions for 2017, 10 year averages and 2007 for day 273. Decadal averages refer to 2007 through 2016 inclusive.

Region 2017273 Day 273
Average
2017-Ave. 2007273 2017-2007
 (0) Northern_Hemisphere 5200394 4944703 255690 4086883 1113511
 (1) Beaufort_Sea 397521 540936 -143415 498743 -101222
 (2) Chukchi_Sea 141983 217113 -75130 51 141932
 (3) East_Siberian_Sea 369289 326398 42891 311 368978
 (4) Laptev_Sea 377166 166604 210562 235245 141922
 (5) Kara_Sea 46667 28503 18164 15367 31300
 (6) Barents_Sea 2010 20562 -18552 4851 -2841
 (7) Greenland_Sea 134724 245771 -111046 353210 -218486
 (8) Baffin_Bay_Gulf_of_St._Lawrence 85755 48614 37141 42247 43508
 (9) Canadian_Archipelago 498801 356144 142657 307135 191666
 (10) Hudson_Bay 1621 4741 -3121 1936 -316
 (11) Central_Arctic 3143698 2988219 155479 2626511 517187

Deficits in Beaufort and Chukchi are more than offset by surpluses in East Siberian and Laptev. Kara and Barents together are average.  Greenland Sea is down but note the strong surpluses in Canadian Archipelago and the Central Arctic, which is already at 95% of its March maximum.

Summary

Earlier observations showed that Arctic ice extents were low in the 1940s, grew thereafter up to a peak in 1977, before declining.  That decline was gentle until 1994 which started a decade of multi-year ice loss through the Fram Strait.  There was also a major earthquake under the north pole in that period.  In any case, the effects and the decline ceased in 2007, 30 years after the previous peak.  Now we have a plateau in ice extents, which could be the precursor of a growing phase of the quasi-60 year Arctic ice oscillation.

For context, note that the average maximum has been 15M, so on average the extent shrinks to 30% of the March high before growing back the following winter.  In 2017 about 33% of the March maximum was retained, so the melt season losses were considerably less than in the past.

Background from Sept. 20

Dave Burton asked a great question in his previous comment, and triggered this response:

Dave, thanks for asking a great question. All queries are good, but a great one forces me to dig and learn something new, in this case a more detailed knowledge of what goes into MASIE reports.

You asked, where do they get their data? The answer is primarily from NIC’s Interactive Multisensor Snow and Ice Mapping System (IMS). From the documentation, the multiple sources feeding IMS are:

Platform(s) AQUA, DMSP, DMSP 5D-3/F17, GOES-10, GOES-11, GOES-13, GOES-9, METEOSAT, MSG, MTSAT-1R, MTSAT-2, NOAA-14, NOAA-15, NOAA-16, NOAA-17, NOAA-18, NOAA-N, RADARSAT-2, SUOMI-NPP, TERRA

Sensor(s): AMSU-A, ATMS, AVHRR, GOES I-M IMAGER, MODIS, MTSAT 1R Imager, MTSAT 2 Imager, MVIRI, SAR, SEVIRI, SSM/I, SSMIS, VIIRS

Summary: IMS Daily Northern Hemisphere Snow and Ice Analysis

The National Oceanic and Atmospheric Administration / National Environmental Satellite, Data, and Information Service (NOAA/NESDIS) has an extensive history of monitoring snow and ice coverage.Accurate monitoring of global snow/ice cover is a key component in the study of climate and global change as well as daily weather forecasting.

The Polar and Geostationary Operational Environmental Satellite programs (POES/GOES) operated by NESDIS provide invaluable visible and infrared spectral data in support of these efforts. Clear-sky imagery from both the POES and the GOES sensors show snow/ice boundaries very well; however, the visible and infrared techniques may suffer from persistent cloud cover near the snowline, making observations difficult (Ramsay, 1995). The microwave products (DMSP and AMSR-E) are unobstructed by clouds and thus can be used as another observational platform in most regions. Synthetic Aperture Radar (SAR) imagery also provides all-weather, near daily capacities to discriminate sea and lake ice. With several other derived snow/ice products of varying accuracy, such as those from NCEP and the NWS NOHRSC, it is highly desirable for analysts to be able to interactively compare and contrast the products so that a more accurate composite map can be produced.

The Satellite Analysis Branch (SAB) of NESDIS first began generating Northern Hemisphere Weekly Snow and Ice Cover analysis charts derived from the visible satellite imagery in November, 1966. The spatial and temporal resolutions of the analysis (190 km and 7 days, respectively) remained unchanged for the product’s 33-year lifespan.

As a result of increasing customer needs and expectations, it was decided that an efficient, interactive workstation application should be constructed which would enable SAB to produce snow/ice analyses at a higher resolution and on a daily basis (~25 km / 1024 x 1024 grid and once per day) using a consolidated array of new as well as existing satellite and surface imagery products. The Daily Northern Hemisphere Snow and Ice Cover chart has been produced since February, 1997 by SAB meteorologists on the IMS.

Another large resolution improvement began in early 2004, when improved technology allowed the SAB to begin creation of a daily ~4 km (6144×6144) grid. At this time, both the ~4 km and ~24 km products are available from NSIDC with a slight delay. Near real-time gridded data is available in ASCII format by request.

In March 2008, the product was migrated from SAB to the National Ice Center (NIC) of NESDIS. The production system and methodology was preserved during the migration. Improved access to DMSP, SAR, and modeled data sources is expected as a short-term from the migration, with longer term plans of twice daily production, GRIB2 output format, a Southern Hemisphere analysis, and an expanded suite of integrated snow and ice variable on horizon.

http://www.natice.noaa.gov/ims/ims_1.html

Footnote

Some people unhappy with the higher amounts of ice extent shown by MASIE continue to claim that Sea Ice Index is the only dataset that can be used. This is false in fact and in logic. Why should anyone accept that the highest quality picture of ice day to day has no shelf life, that one year’s charts can not be compared with another year? Researchers do this, including Walt Meier in charge of Sea Ice Index. That said, I understand his interest in directing people to use his product rather than one he does not control. As I have said before:

MASIE is rigorous, reliable, serves as calibration for satellite products, and continues the long and honorable tradition of naval ice charting using modern technologies. More on this at my post Support MASIE Arctic Ice Dataset

 

Barents Sea Ice-Free. How Come?

Might maritime activities, such as shipping, oil extraction, fishing etc. be having an effect on Barents Sea ice extents?  Arnd Bernaerts has an informative post up at his blog: They warm-up the Arctic! Shipping, Off-Shore, Science etc.!

Dr. Bernaerts explains:

It is not known which alterations shipping, naval forces, research vessels and off-shore industry cause in the Arctic Ocean sea-body structure, whether ice covered or not, and the subsequent impact on the annual sea ice and the polar-weather, called climate change. Bad that science has no idea about this human Arctic warming aspect. Worse, science has never rose, or ever been willing to raise and investigate the subject. At least you will face a hard time to find anything in this respect.

When considering the possible impact of ocean uses on climate change, any activities at sea north of the Polar Circle is a multifold higher than in any other Ocean region. Between the Arctic Ocean and the Equator the climatic impact of human activities the difference could be several hundred, if not thousand times, due to extreme narrow structure margin concerning water temperature and salinity. The temperature range in the upper 150 meter sea surface level is minus 2° to plus 4°C. Arctic salinity is down to 30ppt in places, while the oceans vary between 34ppt and 36ppt. So far it is statistics, and they are ‘wrong’ if not properly applied.

Navigating and other ocean uses in Arctic sea areas without knowing the impact is irresponsible. Navigating through compact ice is even worse, as the force of ship screws may travel over long distances, with significant changes to sea temperatures and salinity.

Summary

The whole article is informative and raises important questions (and not for the first time).  Time to stop obsessing over CO2, the “magic” gas, and try to understand real human impacts.

A Russian liquid gas tanker (LNG) “Christophe de Margerie” just set two Arctic records few weeks ago (Details). The ship not only traveled through the Arctic in record time, but has done so without the use of an icebreaker escort. She is the first of a total of 15 planned LNG carriers that will be gradually deployed.

 

Steady September Arctic Ice

 

With five days left in the month, we can project the likely 2017 September results and compare with years of the previous decade.  2017 is provisional depending on the next five days, but MASIE is averaging 4.8M km2 and the daily extents are over that amount.  SII is 60k km2 lower, but just went over 4.9M, so has a chance to also reach 4.8M.

In August, 4.5M km2 was the median estimate of the September monthly average extent from the SIPN (Sea Ice Prediction Network) who use the reports from SII (Sea Ice Index), the NASA team satellite product from passive microwave sensors.

The graph below shows September comparisons through day 268.Note that as of day 260, 2016 had begun its remarkable recovery, now matching the 10 year average, nearly 200k km2 below 2017. Meanwhile 2007 is 800k km2 behind and the Great Arctic Cyclone year of 2012 is 1.3M km2 less than 2017.  Note also that SII is currently showing slightly more ice than MASIE.

The narrative from activist ice watchers is along these lines:  2017 minimum is not especially low, but it is very thin.  “The Arctic is on thin ice.”  They are basing that notion on PIOMAS, a model-based estimate of ice volumes, combining extents with estimated thickness.  That technology is not mature, and in any case refers to the satellite era baseline, which began in 1979.

The formation of ice this year does not appear thin, since it is concentrated in the central Arctic.  Consider how CAA (Canadian Arctic Archipelago added 100k km2 in the last two weeks:

Click on image to enlarge.

The table shows ice extents in the regions for 2017, 10 year averages and 2007 for day 268. Decadal averages refer to 2007 through 2016 inclusive.

Region 2017268 Day 268
Average
2017-Ave. 2007268 2017-2007
 (0) Northern_Hemisphere 4824033 4648420 175613 4025906 798128
 (1) Beaufort_Sea 358982 488920 -129937 466599 -107617
 (2) Chukchi_Sea 71545 180769 -109224 3054 68491
 (3) East_Siberian_Sea 259179 276825 -17646 311 258868
 (4) Laptev_Sea 275826 138290 137536 222968 52858
 (5) Kara_Sea 42802 22613 20189 18246 24556
 (6) Barents_Sea 6112 20560 -14448 4851 1261
 (7) Greenland_Sea 111111 229228 -118116 335161 -224050
 (8) Baffin_Bay_Gulf_of_St._Lawrence 74169 36672 37497 41385 32784
 (9) Canadian_Archipelago 472601 293992 178610 274334 198267
 (10) Hudson_Bay 1276 3154 -1878 1936 -661
 (11) Central_Arctic 3149271 2956302 192969 2655784 493487

Note the strong surpluses in Canadian Archipelago and the Central Arctic, which is already at 95% of its March maximum.  On the Russian side, Laptev and Kara are surplus to average, while East Siberian has grown to approach average.

Summary

Earlier observations showed that Arctic ice extents were low in the 1940s, grew thereafter up to a peak in 1977, before declining.  That decline was gentle until 1994 which started a decade of multi-year ice loss through the Fram Strait.  There was also a major earthquake under the north pole in that period.  In any case, the effects and the decline ceased in 2007, 30 years after the previous peak.  Now we have a plateau in ice extents, which could be the precursor of a growing phase of the quasi-60 year Arctic ice oscillation.

For context, note that the average maximum has been 15M, so on average the extent shrinks to 30% of the March high before growing back the following winter.  In 2017 about 33% of the March maximum was retained, so the melt season losses were considerably less than in the past.

Background from Sept. 20

Dave Burton asked a great question in his previous comment, and triggered this response:

Dave, thanks for asking a great question. All queries are good, but a great one forces me to dig and learn something new, in this case a more detailed knowledge of what goes into MASIE reports.

You asked, where do they get their data? The answer is primarily from NIC’s Interactive Multisensor Snow and Ice Mapping System (IMS). From the documentation, the multiple sources feeding IMS are:

Platform(s) AQUA, DMSP, DMSP 5D-3/F17, GOES-10, GOES-11, GOES-13, GOES-9, METEOSAT, MSG, MTSAT-1R, MTSAT-2, NOAA-14, NOAA-15, NOAA-16, NOAA-17, NOAA-18, NOAA-N, RADARSAT-2, SUOMI-NPP, TERRA

Sensor(s): AMSU-A, ATMS, AVHRR, GOES I-M IMAGER, MODIS, MTSAT 1R Imager, MTSAT 2 Imager, MVIRI, SAR, SEVIRI, SSM/I, SSMIS, VIIRS

Summary: IMS Daily Northern Hemisphere Snow and Ice Analysis

The National Oceanic and Atmospheric Administration / National Environmental Satellite, Data, and Information Service (NOAA/NESDIS) has an extensive history of monitoring snow and ice coverage.Accurate monitoring of global snow/ice cover is a key component in the study of climate and global change as well as daily weather forecasting.

The Polar and Geostationary Operational Environmental Satellite programs (POES/GOES) operated by NESDIS provide invaluable visible and infrared spectral data in support of these efforts. Clear-sky imagery from both the POES and the GOES sensors show snow/ice boundaries very well; however, the visible and infrared techniques may suffer from persistent cloud cover near the snowline, making observations difficult (Ramsay, 1995). The microwave products (DMSP and AMSR-E) are unobstructed by clouds and thus can be used as another observational platform in most regions. Synthetic Aperture Radar (SAR) imagery also provides all-weather, near daily capacities to discriminate sea and lake ice. With several other derived snow/ice products of varying accuracy, such as those from NCEP and the NWS NOHRSC, it is highly desirable for analysts to be able to interactively compare and contrast the products so that a more accurate composite map can be produced.

The Satellite Analysis Branch (SAB) of NESDIS first began generating Northern Hemisphere Weekly Snow and Ice Cover analysis charts derived from the visible satellite imagery in November, 1966. The spatial and temporal resolutions of the analysis (190 km and 7 days, respectively) remained unchanged for the product’s 33-year lifespan.

As a result of increasing customer needs and expectations, it was decided that an efficient, interactive workstation application should be constructed which would enable SAB to produce snow/ice analyses at a higher resolution and on a daily basis (~25 km / 1024 x 1024 grid and once per day) using a consolidated array of new as well as existing satellite and surface imagery products. The Daily Northern Hemisphere Snow and Ice Cover chart has been produced since February, 1997 by SAB meteorologists on the IMS.

Another large resolution improvement began in early 2004, when improved technology allowed the SAB to begin creation of a daily ~4 km (6144×6144) grid. At this time, both the ~4 km and ~24 km products are available from NSIDC with a slight delay. Near real-time gridded data is available in ASCII format by request.

In March 2008, the product was migrated from SAB to the National Ice Center (NIC) of NESDIS. The production system and methodology was preserved during the migration. Improved access to DMSP, SAR, and modeled data sources is expected as a short-term from the migration, with longer term plans of twice daily production, GRIB2 output format, a Southern Hemisphere analysis, and an expanded suite of integrated snow and ice variable on horizon.

http://www.natice.noaa.gov/ims/ims_1.html

Footnote

Some people unhappy with the higher amounts of ice extent shown by MASIE continue to claim that Sea Ice Index is the only dataset that can be used. This is false in fact and in logic. Why should anyone accept that the highest quality picture of ice day to day has no shelf life, that one year’s charts can not be compared with another year? Researchers do this, including Walt Meier in charge of Sea Ice Index. That said, I understand his interest in directing people to use his product rather than one he does not control. As I have said before:

MASIE is rigorous, reliable, serves as calibration for satellite products, and continues the long and honorable tradition of naval ice charting using modern technologies. More on this at my post Support MASIE Arctic Ice Dataset

 

Overview Winter Climate for NH

cohen-schematic2

The diagram represents how Dr. judah Cohen pictures the Northern Hemisphere wintertime climate system.  He leads research regarding Arctic and NH weather patterns for AER.  He explains the dynamics in an interview at Washington Post (here):

My colleagues, at AER and at selected universities, and I have found a robust relationship between two October Eurasian snow indices and the large-scale winter hemispheric circulation pattern known as the North Atlantic or Arctic Oscillation pattern (N/AO).

The N/AO is more highly correlated with or explains the highest variance of winter temperatures in eastern North America, Europe and East Asia than any other single or combination of atmospheric or coupled ocean-atmosphere patterns that we know of. Therefore, if we can predict the winter N/AO (whether it will be negative or positive) that provides the best chance for a successful winter temperature forecast in North America but certainly does not guarantee it.

[Of the two indices we’ve analyzed], the first and longer [more data points] index is simply the monthly mean snow cover extent (SCE) for the entire month [of October] as measured from satellites. This record dates back to at least 1972 and is available on the Rutger’s Global Snow Lab website.

The second index that we developed last year, with the support of NSF and NOAA grants, measures the daily rate of change of Eurasian snow cover extent also during the entire month of October, which we refer to as the Snow Advance Index or SAI.

There have been recent modeling studies that demonstrate that El Nino modulates the strength and position of the Aleutian Low that then favors stratospheric warmings and subsequently a negative winter N/AO that are consistent with our own research on the relationship between snow cover and stratospheric warmings. So the influence of ENSO on winter temperatures in the Mid-Atlantic and the Northeast may be greater than I acknowledge or that is represented in our seasonal forecast model.

How It Works

Conceptual model for how fall snow cover modifies winter circulation in both the stratosphere and the troposphere–The case for low snow cover on left; the case for extensive snow cover on right.

1. Snow cover increases rapidly in the fall across Siberia, when snow cover is above normal diabatic cooling helps to;
2. Strengthen the Siberian high and leads to below normal temperatures.
3. Snow forced diabatic cooling in proximity to high topography of Asia increases upward flux of energy in the troposphere, which is absorbed in the stratosphere.
4. Strong convergence of WAF (Wave Activity Flux) indicates higher geopotential heights.
5. A weakened polar vortex and warmer down from the stratosphere into the troposphere all the way to the surface.
6. Dynamic pathway culminates with strong negative phase of the Arctic Oscillation at the surface.

From Eurasian Snow Cover Variability and Links with Stratosphere-Troposphere
Coupling and Their Potential Use in Seasonal to Decadal Climate Predictions by Judah Cohen

Extensive 2016 Siberian snowfall led to unusually rapid recovery of Arctic sea ice following relatively low September 2016 minimum.

What About Winter 2017-2018?

Dr. Cohen’s Winter Outlook for NH  September 18, 2017

Many important markers are currently being set indicating the atmosphere is beginning in earnest the transition from summer to winter. There are four features that I am monitoring closely over the coming weeks and months to gauge the evolving atmospheric circulation pattern and resultant weather across the NH.

The first is the nascent stratospheric polar vortex (PV). The PV has returned to the NH polar stratosphere. Much recent research including my own has shown that the relative strength of the PV if not forces, certainly leads prolonged periods of temperature anomalies across key regions of the NH. A strong PV is related to relatively milder temperatures across the mid-latitudes of the NH while a weak PV is related to relatively colder temperatures across the mid-latitudes of the NH. This relationship is strongest in mid-winter. Early signs are that the PV will start off relatively weak similar to last fall. This is somewhat surprising because increasing greenhouse gases favor colder stratospheric temperatures and hence a stronger PV. Poleward heat flux or vertical wave activity flux is predicted to be unusually active in the coming two weeks, which is likely the reason for the predicted relatively weak start to the PV.  (my bolds)

The active poleward heat flux is also likely related to the second feature that I will be following – high latitude blocking. The negative AO state is often a manifestation of strong high latitude blocking while the positive AO often reflects a lack of high latitude blocking. The predicted negative AO in the coming two weeks is a result of predicted strong high latitude blocking with the dominant block predicted to reside in the region of Scandinavia and the Barents-Kara seas. In the near term this will lead to a cold and snowy period across most of Siberia. Blocking in this region is favorable for weakening the stratospheric polar vortex and will likely lead to weakening of the PV over the next two weeks. If similar blocking occurs later on during the late fall and early winter it will favor a sudden stratospheric warming (SSW). SSW in the winter often precedes extended periods of severe winter weather across the continents of the NH. (my bolds)

The third feature is Arctic sea ice extent. The minimum in Arctic sea ice extent is achieved this time of year and if the minimum has not already been reached it should occur relatively soon. The past two blogs I suggested the possibility that the sea ice minimum could be similar to the years 2008 and 2010 and that is looking likely. Sea ice extent is extremely low compared to climatology but will not be a new record low. The largest anomalies are in the North Pacific side of the Arctic in the Beaufort Sea. This pattern matches recent Septembers. Typically, the largest anomalies migrate with the progression of fall to the North Atlantic side of the Arctic. It is my opinion that low sea ice favors high latitude blocking but the nature of the blocking is regionally dependent. For example, low sea ice in the Barents-Kara Seas favors blocking in the northwest Eurasia sector resulting in cold temperatures in parts of Asia. (my bolds)

The fourth feature is Siberian snow cover. My, along with my colleagues and others, research has shown that extensive Siberian snow cover in the fall favors a trough across East Asia with a ridge to the west near the Urals. The atmospheric circulation pattern favors more active poleward heat flux, a weaker PV and cold temperatures across the NH. With a predicted strong negative AO in the coming weeks, snow cover is likely to advance relatively quickly heading into October. It is very early in the snow season but recent falls have been snowy across Siberia and therefore I do expect another upcoming snowy fall across Siberia. Though admittedly, recent Siberian snow cover as a predictor of winter temperatures has been mixed.

Summary

Uh oh.  Now where did I put away my long johns?