Tsonis Explains Oceans Making Climate


THE LITTLE BOY El Niño and natural climate change by Anastasios Tsonis is a newly published GWPF report discussing how the ocean drives climate fluctuations.  This adds to a continuing theme of this blog, Oceans Make Climate, coined by Dr. Arnd Bernaerts, also expressed as Oceans Govern Climate.  The whole PDF is worth reading.

My own effort to describe these ocean oscillations is Dynamic Duo: The Ocean-Air Partnership which discusses how several of these oscillations operate, including the ENSO (El Nino) cycle:
Other posts provide background on climate effects from oceans.

Climate Report from the Water World discusses the linkage of global temperatures to ocean temperatures (SST).

Empirical Evidence: Oceans Make Climate presents in situ measurements of the ocean-air heat exchange flux.

All essays on this theme are found in the Category: Oceans Make Climate

Ocean Physics in a Cup of Coffee


The Great Arctic Cyclone of 2012 from satellite.

 Recently I posted Ocean Climate Ripples summarizing an article by Dr. Arnd Bernaerts on how humans impact upon the oceans and thereby the climate. His references to activities in the North and Baltic Seas included this comment:

It works like a spoon stirring hot coffee, attracting cold air from Siberia. In this respect they serve as confined research regions, like a unique field laboratory experiment.

This post presents an article by John S. Wettlaufer who sees not only the oceans but cosmic patterns in coffee cup vorticies. His essay is The universe in a cup of coffee.  (Bolded text is my emphasis.)

John Wettlaufer is the A. M. Bateman Professor of Geophysics, Physics, and Applied Mathematics at Yale University in New Haven, Connecticut.

As people throughout the world awake, millions of them every minute perform the apparently banal act of pouring cold milk into hot coffee or tea. Those too groggy to reach for a spoon might notice upwelling billows of milk separated by small, sinking, linear dark features such as shown in panel a of the figure. The phenomenon is such a common part of our lives that even scientists—trained to be observant—may overlook its importance and generality. The pattern bears resemblance to satellite images of ocean color, and the physics behind it is responsible for the granulated structure of the Sun and other cosmic objects less amenable to scrutiny.

(a) Everyone knows that if you wait for a while coffee will get cold. The primary agent doing the cooling is evaporatively driven convection. Pour cold milk into hot coffee and wait. The cold milk mixes very little as it sinks to the bottom of the cup, but eventually cold plumes created by evaporation at the surface sink down and displace the milk. In time, a pattern forms of upwelling (lighter) and downwelling (darker) fluid.

Archimedes pondered the powerful agent of motion known as buoyancy more than two millennia ago. Children do, too, when they imagine the origins of cloud animals on a summer’s day. The scientific study of thermal and compositional buoyancy originated in 1798 with a report by Count Rumford intended to disabuse believers of the caloric theory. Nowadays, buoyancy is at the heart of some of the most challenging problems in nonlinear physics—problems that are increasingly compelling. Answers to fundamental questions being investigated today will have implications for understanding Earth’s heat budget, the transport of atmospheric and oceanographic energy, and, as a corollary, the climate and fate of stars and the origins of planets. Few avenues of study combine such basic challenges with such a broad swath of implications. Nonetheless, the richness of fluid flow is rarely found in undergraduate physics courses. 

Wake up and smell the physics

The modern theory of hydrodynamic stability arose from experiments by Henri Bénard, who heated, from below, a thin horizontal layer of spermaceti, a viscous, fluid wax. For small vertical temperature gradients, Bénard observed nothing remarkable; the fluid conducted heat up through its surface but exhibited no wholesale motion as it did so. However, when the gradient reached a critical value, a hexagonal pattern abruptly appeared as organized convective motions emerged from what had been an homogenous fluid. The threshold temperature gradient was described by Lord Rayleigh as reflecting the balance between thermal buoyancy and viscous stresses, embodied in a dimensionless parameter now called the Rayleigh number. 

When the momentary thermal buoyancy of a blob of fluid—provided by the hot lower boundary—overcomes the viscous stresses of the surrounding fluid, wholesale organized motion ensues. The strikingly structured fluid, with its up-and-down flow assuming specific geometries, is an iconic manifestation of how a dissipative system can demonstrate symmetry breaking (the up-and-down flow distinguishes horizontal positions even though the lower boundary is at a uniform temperature), self-organization, and beauty. (See the article by Leo Kadanoff in PHYSICS TODAY, August 2001, page 34.)

Astrophysicists and geophysicists can hardly make traction on many of the problems they face unless they come to grips with convection—and their quests are substantially complicated by their systems’ rotations. Despite the 1835 publication of Gaspard-Gustave Coriolis’s Mémoire sur les équations du mouvement relatif des systèmes de corps (On the Equations of Relative Motion of a System of Bodies), debate on the underlying mechanism behind the deflection of the Foucault pendulum raged in the 1905 volume of Annalen der Physik, the same volume in which Albert Einstein introduced the world to special relativity. Maybe the lack of comprehension is not so surprising: Undergraduates still more easily grasp Einstein’s theory than the Coriolis effect, which is essential for understanding why, viewed from above, atmospheric circulation around a low pressure system over a US city is counterclockwise but circulation over an Australian city is clockwise. 

Practitioners of rotating-fluid mechanics generally credit mathematical physicist Vagn Walfrid Ekman for putting things in the modern framework, in another key paper from 1905. Several years earlier, during his famous Fram expedition, explorer Fridtjof Nansen had observed that ice floes moved to the right of the wind that imparted momentum to them. Nansen then suggested to Ekman that he investigate the matter theoretically. That the deflection was due to the ocean’s rotating with Earth was obvious, but Ekman described the corrections that must be implemented in a noninertial reference frame. Since so much in the extraterrestrial realm is spinning, scientists taken by cosmological objects eventually embraced Ekman’s formulation and sought evidence for large-scale vortex structures in the accretion disks around stars. Vortices don’t require convection and when convection is part of a vortex-producing system, additional and unexpected patterns ensue. 

Cream, sugar, and spinning

The Arctic Ocean freezes, cooling and driving salt into the surface layers. Earth’s inner core solidifies, leaving a buoyant, iron-depleted metal. Rapidly rising air from heated land surfaces creates thunderstorms. Planetary accretion disks receive radiation from their central stars. In all these systems, rotation has a hand in the fate of rising or sinking fluid. What about your steaming cup of coffee: What happens when you spin that?

(b) Several views of a volume of water 11.4 cm deep with a cross section of 22.9 × 22.9 cm. Panel b shows the liquid about 7.5 minutes after the fluid is set in motion at a few tenths of a radian per second. The principal image indicates particle density (light is denser) at a depth of 0.6 cm below the surface. The inset is a thermal image of the surface

Place the cup in the center of a spinning record player— some readers may even remember listening to music on one of those. The friction from the wall of the cup transmits stresses into the fluid interior. If the coffee is maintained at a fixed temperature for about a minute, every parcel of fluid will move at the same angular velocity; the coffee is said to be spun up.

On the time scales of contemporary atmospheric and oceanographic phenomena, Earth’s rotation is indeed a constant, whereas the time variation of the rotation could be important for phenomena in planetary interiors, the evolution of an accretion disk, or tidal perturbations of a distant moon. Thus convective vortices are contemplated relative to a rotating background flow. Perturbations in the rotation rate revive the role of boundary friction and substantially influence the interior circulation. Moreover, evaporation and freezing represent additional perturbations, which alter how the fluid behaves as stresses attempt to enforce uniform rotation. Returning to the coffee mug as laboratory, the model system shown in panel b of the figure reveals how the added complexity of rotation momentarily organizes the pattern seen in panel a into concentric rings of cold and warm fluid.

(c) Panel c shows the breakup of the rings, 11 minutes after the initiation of rotation, due to a shearing instability.

Fundamental competitions play out when you rotate your evaporating coffee. As we have seen, evaporative cooling drives narrow regions of downward convection; significant viscous and Coriolis effects balance each other in those downwelling regions. Rotation then dramatically organizes the sinking cold sheets and rising warm billows into concentric rings that first form at the center of the cup. By about 7.5 minutes after rotation has been initiated, the rings shown in panel b have grown to cover most of the horizontal plane. Their uniform azimuthal motion exists for about 3.5 minutes, at which time so-called Kelvin–Helmholtz billows associated with the shearing between the rings appear at their boundaries, grow, and roll up into vortices; see panel c. Three minutes later, as shown in panel d, those vortices lose their azimuthal symmetry and assemble into a regular vortex grid whose centers contain sinking fluid.

(d) As panel d shows, at 14 minutes the breakup leads to a grid of vortices. (Adapted from J.-Q. Zhong, M. D. Patterson, J. S. Wettlaufer, Phys. Rev. Lett. 105, 044504, 2010.)

Panel d shows one type of coherent structure that forms in rotating fluids and other mathematically analogous systems if the persistence time of the structure—vortices here— is much longer than the rotational period. Other well-known examples are Jupiter’s Great Red Spot, which is an enduring feature of the chaotic Jovian atmosphere, and the meandering jet streams on Earth.

Moreover, persistent vortices in superconductors and superfluids organize themselves. Indeed, it appears that vortices in superconductors are as mobile as their counterparts in inviscid fluids. And although scientists have long studied rotating convective superfluids, the classical systems considered in this Quick Study suggest that we may yet find surprising analogies in superconductors. Will we one day see superconducting jet streams?

If you are reading this article with a cup of coffee, put it down and take a closer look at what is going on in your cup.


Wettlaufer has been an advocate for getting the physics right in climate models.  His analogy of a cuppa coffee is actually a demonstration of mesoscale fluid and rotational dynamics and perturbations that still defy human attempts to simulate climate operations.


Ocean Climate Ripples

Dr. Arnd Bernaerts is again active with edifying articles on how humans impact upon the oceans and thereby the climate. His recent post is Global Cooling 1940 – 1975 explained for climate change experts

I and others first approach Dr. Bernaerts’ theory relating naval warfare to climate change with a properly skeptical observation. The ocean is so vast, covering 71% of our planet’s surface and up to 11,000 meters deep, with such a storage of solar energy that it counteracts all forcings including human ones.

As an oceanographer, Bernaerts is well aware of that generalization, having named his website Oceans Govern Climate. But his understanding is much more particular and more clear to me in these recent presentations. His information is encyclopedic and his grasp of the details can be intimidating, but I think I get his main point.

When there is intense naval warfare concentrated in a small, shallow basin like the North Sea, the disturbance of the water structure and circulation is profound. The atmosphere responds, resulting in significant regional climate effects. Nearby basins and continents are impacted and eventually it ripples out across the globe.

The North Atlantic example is explained by Bernaerts Cooling of North Sea – 1939 (2_16) Some excerpts below.

Follow the Water

Water, among all solids and liquids, has the highest heat capacity except for liquid ammonia. If water within a water body remained stationary and did not move (which is what it does abundantly and often forcefully for a number of reasons), the uppermost water surface layer would, to a very high percentage, almost stop the transfer of any heat from a water body to the atmosphere.

However, temperature and salt are the biggest internal dynamic factors and they make the water move permanently. How much the ocean can transfer heat to the surface depends on how warm the surface water is relative to atmospheric air. Of no lesser importance is the question, as to how quickly and by what quantities cooled-down surface water is replaced by warmer water from sub-surface level. Wind, cyclones and hurricanes are atmospheric factors that quickly expose new water masses at the sea surface. Another ‘effective’ way to replace surface water is to stir the water body itself. Naval activities are doing just this.

War in the North Sea

Since the day the Second World War had started naval activities moved and turned the water in the North Sea at surface and lower levels at 5, 10, 20 or 30 metres or deeper on a scale that was possibly dozens of times higher than any comparable other external activity over a similar time period before. Presumably only World War One could be named in comparison.

The combatants arrived on the scene when the volume of heat from the sun had reached its annual peak. Impacts on temperatures and icing are listed in the last section: ‘Events’ (see below). The following circumstantial evidences help conclude with a high degree of certainty that the North Sea contributed to the arctic war winter of1939/40.

Climate Change in Response

On the basis of sea surface temperature record at Helgoland Station and subsequent air temperature, developments provide strong indication that the evaporation rate was high. This is confirmed by the following impacts observed:

More wind: As the rate of evaporation over the North Sea has not been measured and recorded, it seems there is little chance to prove that more vapour moved upwards during autumn 1939 than usual. It can be proved that the direction of the inflow of wind had changed from the usually most prevailing SW winds, to winds from the N to E, predominantly from the East. At Kew Observatory (London) general wind direction recorded was north-easterly only three times during 155 winter years; i.e. in 1814, 1841 and 1940[6]. This continental wind could have significantly contributed to the following phenomena of 1939: ‘The Western Front rain’.

More rain: One of the most immediate indicators of evaporation is the excessive rain in an area stretching from Southern England to Saxony, Silesia and Switzerland. Southern Baltic Sea together with Poland and Northern Germany were clearly separated from the generally wet weather conditions only three to four hundred kilometres further south. A demonstration of the dominant weather situation occurred in late October, when a rain section (supplied from Libya) south of the line Middle Germany, Hungary and Romania was completely separated from the rain section at Hamburg – Southern Baltic[7].

More cooling: Further, cooling observed from December 1939 onward can be linked to war activities in two ways. The most immediate effect, as has been explained (above), is the direct result from any excessive evaporation process. The second (at least for the establishment of global conditions in the first war winter) is the deprivation of the Northern atmosphere of its usual amount of water masses, circulating the globe as humidity.

Rippling Effects in Northern Europe and Beyond

Next to the Atlantic Gulf Current, the North Sea (Baltic Sea is discussed in the next chapter) plays a key role in determining the winter weather conditions in Northern Europe. The reason is simple. As long as these seas are warm, they help sustain the supremacy of maritime weather conditions. If their heat capacity turns negative, their feature turns ‘continental’, giving high air pressure bodies an easy opportunity to reign, i.e. to come with cold and dry air. Once that happens, access of warm Atlantic air is severely hampered or even prevented from moving eastwards freely.

The less moist air is circulating the globe south of the Arctic, the more easily cold polar air can travel south. A good piece of evidence is the record lack of rain in the USA from October – December 1939 followed by a colder than average January 1940, a long period of low water temperatures in the North Sea from October-March (see above) and the ‘sudden’ fall of air temperatures to record low in Northern Europe.

The graph above suggests that naval warfare is linked to rapid cooling. The climate system responds with negative feed backs to restore equilibrium. Following WWI, limited to the North Atlantic, the system overshot and the momentum continued upward into the 1930s. Following WWII, with both Pacific and Atlantic theaters, the climate feed backs show several peaks trying to offset the cooling, but the downward trend persisted until about 1975.


The Oceans Govern Climate. Man influences the ocean governor by means of an expanding fleet of motorized propeller-driven ships. Naval warfare in the two World Wars provide the most dramatic examples of the climate effects.

Neither I nor Dr. Bernaerts claim that shipping and naval activity are the only factors driving climate fluctuations. But it is disturbing that so much attention and money is spent on a bit player CO2, when a much more plausible human influence on climate is ignored and not investigated.

AMO: Atlantic Climate Pulse

I was inspired by David Dilley’s weather forecasting based upon Atlantic water pulsing into the Arctic Ocean (see post: Global Weather Oscillations). So I went looking for that signal in the AMO dataset, our best long-term measure of sea surface temperature variations in the North Atlantic.


For this purpose, I downloaded the AMO Index from Kaplan SST v.2, the unaltered and untrended dataset. By definition, the data are monthly average SSTs interpolated to a 5×5 grid over the North Atlantic basically 0 to 70N.

For an overview the graph below presents a comparison between Annual, March and September averages from 1856 to 2016 inclusive.


We see about 4°C difference between the cold month of March, and warm September. The overall trend is slightly positive at 0.27°C per century, about 10% higher in September and 10% lower in March. It is also clear that monthly patterns resemble closely the annual pattern, so it is reasonable to look more closely into Annual variability.

The details of the Annual fluctuations in AMO reveal the pulse pattern suggested by Dilley.


We note firstly the classic pattern of temperature cycles seen in all datasets featuring quality-controlled unadjusted data. The low in 1913, high in 1944, low in 1975, and high in 1998. Also evident are the matching El Nino years 1998, 2009 and 2016, indicating that what happens in the Pacific does not stay in the Pacific.

Most interesting are the periodic peaking of AMO in the 8 to 10 year time frame. The arrows indicate the peaks, which as Dilley describes produce a greater influx of warm Atlantic water under the Arctic ice. And as we know from historical records and naval ice charts, Arctic ice extents were indeed low in the 1930s, high in the 1970s, low in the 1990s and on a plateau presently.


I am intrigued but do not yet subscribe to the Lunarsolar explanation for these pulses, but the AMO index does provide impressive indication of the North Atlantic role as a climate pacemaker. Oceans make up 71% of the planet surface, so SSTs directly drive global mean temperatures (GMT). But beyond the math, Atlantic pulses set up oscillations in the Arctic that impact the world.

In the background is a large scale actor, the Atlantic Meridional Overturning Circulation (AMOC) which is the Atlantic part of the global “conveyor belt” moving warm water from the equatorial oceans to the poles and back again.  For more on this deep circulation pattern see Climate Pacemaker: The AMOC

The Ocean Climate Spin Zone


This image shows the five major ocean gyres. It shows that gyres rotate in a clockwise direction in the Northern hemisphere and a counter-clockwise direction in the Southern hemisphere. The black square shows the approximate location of the Great Pacific Garbage Patch and the red circle shows the position of the Beaufort gyre in the Arctic Ocean.

Professional hydrologist Rob Ellison has for years been thinking and writing to connect the dots between the sun, ocean and climate. Recently he wrote this post at his excellent blog Terra et Aqua, An Earnest Discovery of Climate Causality (link in red)

Below I provide some excerpts from his discussion about an ocean mechanism which would be much better understood, were it not for the CO2 obsession sucking up most of the research funding.


It is hypothesized that upwelling in the Pacific Ocean is modulated by solar activity over periods of decades to millennia – with profound impacts on communities and ecosystems globally. The great resonant systems of the Pacific respond at variable periods – the tempo increased last century for instance – of La Niña and El Niño alternation. . .The mechanism proposed is a spinning up of the Pacific gyres as a result of colder and denser polar air. Low solar activity spins up the gyres producing more frequent La Niña (more equatorial upwelling) – and vice versa.

Pacific Oscillations Global Impact

The Pacific has a globally influential role in climate variability at scales of months to millennia. The variability in atmospheric temperature, rainfall and biology has its origin in the volume of cold water rising off California and in the equatorial Pacific. It is an ever changing anomaly.

The principle of atmospheric heating and cooling by ENSO is very simple. Cold, nutrient rich currents cascade through the deep oceans over a millennia or more. These turbulent currents don’t generally emerge through a sun warmed surface layer. By far the most significant deep ocean upwelling is in the eastern and central Pacific. Cold water in contact with the atmosphere absorbs heat and warms as the atmosphere cools. At times there is less upwelling and warm water spreads eastward across the Pacific – warming the atmosphere. It is simple enough to see in temperature data.

I have a preference for near global coverage and depth integrated satellite temperature records – it doesn’t miss energy in latent heat at the surface for one thing. 21st century instrumentation is much to be preferred going forward. Over the past century the 20 to 30 year influence of the Pacific Decadal Oscillation (PDO) anomaly can be seen in the surface records. Warming to the mid 1940’s, cooling to 1976, warming to 1998 and little change since. The PDO and ENSO are, moreover, in lockstep. A cooler PDO anomaly and more frequent and intense La Niña – and vice versa.

Pacific Gyres Spinning Up Climate Change

The atmospheric/ocean system of triggers and feedbacks varies – usually abruptly with triggers. The trigger for more upwelling I can only imagine is the great ocean gyres. Ocean gyres spin up on the surface through winds and planetary rotation. Pressure systems shift polar winds and storms into lower latitudes. High polar atmospheric pressures spin up the gyres pushing cold polar water into the Californian and Peruvian currents. Roiling cold water upwelling sets up wind and current feedback across the Pacific.

More polar cold water at the surface facilitates upwelling in critical regions.  Trade winds spin up as a feedback and piles warm water against Australia and Indonesia.  Sometimes the winds falter and warm water flows back eastward suppressing cold upwelling.  The whole is a complex and dynamic system triggered by changes in atmospheric pressure zones in the north and south Pacific.  Great movements of atmospheric mass driven by a marginal change in solar activity.  A large reaction from a small jolt as expected with technically chaotic systems.

Tessa Vance and colleagues from the Antarctic Climate and Ecosystems CRC found a proxy of eastern Pacific upwelling in an ice core at the Law Dome Antarctica.  A higher salt content – from polar westerlies – is a proxy for solar activity.  But also results in changes in the great Pacific gyres and the intensity of upwelling.   More upwelling brings rain and cyclones to Indonesia and northern and eastern Australia, drought in the United States of and South America, cooler global temperatures and biological abundance.   Less in El Niña conditions and we – in Australia – get drought.   The absolute volume of rainfall is roughly constant but where it falls on the planet changes.

The record captures in high resolution the 20 to 30 year Pacific beat, the change in the ENSO tempo last century and has at least a resemblance to the solar signal over a 1000 years.  But even with a millennial high El Niño anomaly last century – conditions have been far more extreme at other times in the past 12,000 years.


Will there be more La Niña over the next centuries? Can we expect more El Niño in a thousand years?  Might we see great herds return to the Sahel?  The future remains unpredictable.   Still – a return to the mean scenario does suggest better odds on a cooler sun and a little more upwelling in the Pacific Ocean – a cooling influence on the atmosphere and the inevitable regional variabilities in rainfall.

Oceans Make Climate is a major theme at this blog, since I fortunately made the acquaintance of Dr. Arnd Bernaerts.  Rob Ellison adds another important dimension with his consideration of the gyres.


Recently I noticed how sea surface temperatures drove the 2015-2016 global warming, as shown in the HadSST3 record:

Note that higher temps in 2015 and 2016 are first of all due to a sharp rise in Tropical SST, beginning in March 2015, peaking in January 2016, and steadily declining back to its beginning level. Secondly, the Northern Hemisphere added two bumps on the shoulders of Tropical warming, with peaks in August of each year. Finally, note that the global release of heat was not dramatic, due to the Southern Hemisphere offsetting the Northern one.

Much ado will be made of this warming, including claims of human causation, despite the obvious oceanic origin. Further, it is curious that CO2 functions as a warming agent so unevenly around the world, and that the Tropics drove this event, contradicting CO2 warming theory.

Anatomy of the Hottest Years Ever


Overview: Seafloor Eruptions and Ocean Warming

Global heat flux of the Earth combining heat flux measurements on land and continental margins with a thermal model for the cooling of the oceanic lithosphere. The Earth loses energy as heat flows out through its surface. The total energy loss of the Earth has been estimated at 46 ± 2 TW, of which 14 TW comes through the continents and 32 TW comes from the seafloor. By Jean-Claude Mareschal

From the Unsettled Science File (h/t to Paul Homewood for posting on this subject recently)

Little attention is paid to geothermal heat fluxes warming the ocean from below, mostly because of limited observations and weak understanding about the timing and extent of eruptions.

The existence of heat rising through earth’s crust is evident to all, and the large majority of vents are under the ocean. Consider the image above, and notice at the top center is the small black island off the east coast of Greenland, right on top of the orange mid-ocean ridge. Iceland produces more than 50% of its electricity from geothermal, as well as heating numerous buildings from the same source.

In addition, farther up under the north pole, scientists discovered an eruption of intense seismic activity beginning in Gakkel Ridge in January of 1999 and continuing for seven months.  That happens to be about the time Arctic ice extent took a nosedive, stabilizing after 2007.

Global Volcanism Project, East Gakkel Ridge at 85°E

Researchers have considered the importance of this source of energy into the climate system from various points of view. Some abysmal studies (pun intended) were motivated to look in the ocean depths for the missing heat not appearing in the surface temperature records since 1998. Some warming was found but the case was weak since the Argo records showed no passage of heat between upper and lower ocean strata. Of course no thought was given to the seafloor being the warming source.  However, much more serious and extensive research has been done by marine geologists wanting to better understand the cooling of the earth itself.


There appear to be three major issues around heating of the ocean from below through the seafloor:

1.  Is geothermal energy powerful enough to make a difference upon the vast ocean heat capacity?
2.  If so, Is geothermal energy variable enough to create temperature differentials?
3.  Most of the ocean floor is unexplored, so how much can we generalize from the few places we  have studied?

1. Some researchers conclude that geothermal heating of the oceans can not be ignored as trivial.

J. G. Sclater et al (here)

The total heat loss of the earth is 1002 × 10^10 cal/s (42.0 × 10^12 W), of which 70% is through the deep oceans and marginal basins and 30% through the continents and continental shelves. The creation of lithosphere accounts for just under 90% of the heat lost through the oceans and hence about 60% of the worldwide heat loss. Convective processes, which include plate creation and orogeny on continents, dissipate two thirds of the heat lost by the earth. Conduction through the lithosphere is responsible for 20%, and the rest is lost by the radioactive decay of the continental and oceanic crust.

Maqueda et al. (here)

Without geothermal heat fluxes, the temperatures of the abyssal ocean would be up to 0.5 C lower than observed, deep stratification would be reinforced by about 25%, and the strength of the abyssal circulation would decrease by between 25% and 50%, substantially altering the ability of the deep ocean to transport and store not only heat but also carbon and other climatically important tracers (Adcroft et al., 2001, Hofmann and Morales Maqueda, 2009, Mashayek et al., 2013). It has been hypothesised that interactions between the ocean circulation and geothermal heating are responsible for abrupt climatic changes during the last glacial cycle (Adkins et al, 2005).

Matthias Hofmann et al. (here)

Geothermal heating of abyssal waters is rarely regarded as a significant driver of the large-scale oceanic circulation. Numerical experiments with the Ocean General Circulation Model POTSMOM-1.0 suggest, however, that the impact of geothermal heat flux on deep ocean circulation is not negligible. Geothermal heating contributes to an overall warming of bottom waters by about 0.4◦C, decreasing the stability of the water column and enhancing the formation rates of North Atlantic Deep Water and Antarctic Bottom Water by 1.5 Sv (10% ) and 3 Sv (33% ), respectively. Increased influx of Antarctic Bottom Water leads to a radiocarbon enrichment of Pacific Ocean waters, increasing ∆14C values in the deep North Pacific from -269◦/◦◦when geothermal heatingis ignored in the model, to -242◦/◦◦when geothermal heating is included. A stronger and deeper Atlantic meridional overturning cell causes warming of the North Atlantic deep western boundary current by up to 1.5◦C


During the 2009 expedition, superheated molten lava, about 1,204ºC (2,200ºF) erupts, producing a bright flash as hot magma that is blown up into the water before settling back to the sea floor. Notice the front of the remotely operated vehicle (foreground, left). High resolution (Credit: Image courtesy of NSF and NOAA)

2.  Seafloor eruptions are quite variable and unpredictable, and while localized, can influence ocean circulation patterns.

Jess F. Adkins et al. (here)

The solar energy flux of 200 W/m2 at the ocean’s surface (Peixoto and Oort, 1992) is much larger than the next largest potential source of energy to drive climate changes, geothermal heating at the ocean’s bottom (50–100 mW/m2 ) (Stein and Stein, 1992), but this smaller heat input might still play an important role in rapid climate changes.

It is clear that variations in the solar flux pace the timing of glacial cycles (Hays et al., 1976), but these Milankovitch time scales are too long to explain the decadal transitions found in the ice cores. Another, higher frequency, source of solar variability that would directly drive the observed climate shifts has yet to be demonstrated. Therefore, mechanisms to explain the abrupt shifts all require the climate system to store potential energy that can be catastrophically released during glacial times, but not during interglacials (Stocker and Johnsen, 2003).

At the Last Glacial Maximum (LGM), when the deep ocean was filled with salty water from the Southern Ocean, geothermal heating may have been an important source of this potential energy.

In modern ocean studies there is an increasing awareness of the effect of geothermal heating on the overturning circulation. As an alternative to solar forcing, Huang (1999) has recently pointed out that geothermal heat, while small in magnitude, can still be important for the modern overturning circulation because it warms the bottom of the ocean, not the top. Density gradients at the surface of the ocean are not able to drive a deep circulation without the additional input of mechanical energy to push isopycnals into the abyss (Wunsch and Ferrari, 2004). Heating from below, on the other hand, increases the buoyancy of the deepest waters and can lead to large scale overturning of the ocean without additional energy inputs. Several modern ocean general circulation models have explored the overturning circulation’s sensitivity to this geothermal input. In the MIT model a uniform heating of 50 mW/m2 at the ocean bottom leads to a 25% increase in AABW overturning strength and heats the Pacific by 0.5 1C (Adcroft et al., 2001; Scott et al., 2001). In the ORCA model, applying a more realistic bottom boundary condition that follows the spatial distribution of heat input from Stein and Stein (1992) gives similar results (Dutay et al., 2004). In both models, most of the geothermal heat radiates to the atmosphere in the Southern Ocean, as this is the area where most of the world’s abyssal isopycnals intersect the surface.

The area of the modern ocean is 350×10^6 km2 . The area of the Southern Ocean between 80–85S (the region around Antarctica) is 0.4×10^6 km2 . This factor of 1000 means that the focused geothermal heating of 50 mW/m2 is locally of the same order as the total heat exchange at high southern latitudes. The focusing effect of geothermal heating can cause this heat flux to be a significant fraction of the total heat loss in the crucial deep-water formation zones in the glacial Southern Ocean. This suggests that the geothermal heat is potentially relevant for determining the heat content of the abyssal waters.


3. The number of hydrothermally active seamounts is estimated to be somewhere between 100,000 and 10,000,000.

Andrew T. Fisher and C. Geoffrey Wheat (here)

Thus, most of the thermally important fluid exchange between the crust and ocean must occur where volcanic rocks are exposed at the seafloor; little fluid exchange on ridge flanks occurs through seafloor sediments overlying volcanic crustal rocks. Seamounts and other basement outcrops focus ridge-flank hydrothermal exchange between the crust and the ocean. We describe the driving forces responsible for hydrothermal flows on ridge flanks, and the impacts that these systems have on crustal heat loss, fluid composition, and subseafloor microbiology.

Earth’s geothermal heat output is about 44 TW, with most heat loss occurring through ocean basins (e.g., Sclater et al., 1980; Pollack et al., 1993). Seafloor hydrothermal heat output is on the order of 10 TW, ~ 25% of Earth’s total geothermal heat output, and ~ 30% of the oceanic lithospheric heat output (Figure 1A). Only a small fraction of this advective heat output occurs at high temperatures at mid-ocean ridges; the vast majority occurs at lower temperatures (generally 5–20°C) on ridge flanks, suggesting an associated fluid discharge of ~ 10^16 kg yr-1 (Figure 1B) (C. Stein et al., 1995; Mottl, 2003; Wheat et al., 2003). This low-temperature flow rivals the discharge of all rivers to the ocean (4 x 10^16 kg yr-1), and is about three orders of magnitude greater than the sum of high-temperature hydrothermal discharges at mid-ocean ridges (~ 10^13 kg yr-1).

Networks of seamounts permit rapid fluid circulation to bypass thick and relatively continuous sediment across much of the deep seafloor. Fluid recharges into the crust as oceanic bottom seawater, being relatively cold and dense. As the fluid penetrates more deeply into the crust, it warms and reacts with the surrounding basalt, and interacts with the overlying sediments through diffusive exchange across the sediment-basalt interface. Fluid can flow laterally for tens of kilometers through the oceanic crust, with the extent of heating and reaction dependent on the flow rate, crustal age, and other factors. Weaker circulation systems can result in significant local rock alteration and heat extraction, but are unlikely to have a large impact on lithospheric heat loss on a regional scale.

The number of hydrothermally active seamounts is estimated to be somewhere between 100,000 and 10,000,000 , based on mapping and seamount population estimates by Wessel (2001) and Hillier and Watts (2007), and the observation that, of the seamounts and outcrops that have been surveyed, a significant fraction appear to be hydrothermally active (Fisher et al., 2003a, 2003b; Hutnak et al., 2008; Villinger et al., 2002).

Monster mountain discovered lurking in depths of Pacific Ocean

Monster mountain discovered lurking in depths of Pacific Ocean

Without seamounts and other basement outcrops, it would not be possible for ridge-flank hydrothermal circulation to mine a significant fraction of lithospheric heat once sediments become thick and continuous on a regional basis. Thus, ridge-flank hydrothermal activity would be very different on an Earth without seamounts

Analyses of satellite gravimetric and ship track data suggest that there could be as many as 1,000,000 seamounts having a radius of ≥ 3.5 km and height ≥ 2 km (Wessel, 2001), and perhaps 10^6 to 10^7 features > 100 m in height (Hillier and Watts, 2007). Given the ubiquity of these features on ridge flanks, it is surprising how little we know about which seamounts are hydrologically active—how many recharge and how many discharge.

The thermobaric capacitor has enough energy to overturn the water column, can be triggered by regular oceanic processes, and charges over a time scale that is relevant to the climate record.


This source of heat has been dismissed because it is poorly known, and because its eruptive events are unpredictable and can not therefore be represented in climate models.  Despite geothermal eruptions having only localized effects, the impact on ocean circulations is significant.

John Reid (here)

Volcanic activity does not fit this neat picture. Volcanic behaviour is random, i.e. it is “stochastic” meaning “governed by the laws of probability”. For fluid dynamic modellers stochastic behaviour is the spectre at the feast. They do not want to deal with it because their models cannot handle it. We cannot predict the future behaviour of subaqueous volcanoes so we cannot predict future behaviour of the ocean-atmosphere system when this extra random forcing is included.

To some extent, chaos theory is called in as a substitute, but modellers are very reticent about describing and locating (in phase space) the strange attractors of chaos theory which supposedly give their models a stochastic character. They prefer to avoid stochastic descriptions of the real world in favour of the more precise but unrealistic determinism of the Navier-Stokes equations of fluid dynamics.

This explains the reluctance of oceanographers to acknowledge subaqueous volcanism as a forcing of ocean circulation.  Unlike tidal forcing, wind stress and thermohaline forcing, volcanism constitutes a major, external, random forcing which cannot be generated from within the model. It has therefore been ignored.
But the science is advancing.


Maya Tolstoy (here)

Vast ranges of volcanoes hidden under the oceans are presumed by scientists to be the gentle giants of the planet, oozing lava at slow, steady rates along mid-ocean ridges. But a new study shows that they flare up on strikingly regular cycles, ranging from two weeks to 100,000 years—and, that they erupt almost exclusively during the first six months of each year. The pulses—apparently tied to short- and long-term changes in earth’s orbit, and to sea levels–may help trigger natural climate swings. Scientists have already speculated that volcanic cycles on land emitting large amounts of carbon dioxide might influence climate; but up to now there was no evidence from submarine volcanoes. The findings suggest that models of earth’s natural climate dynamics, and by extension human-influenced climate change, may have to be adjusted. The study appears this week in the journal Geophysical Research Letters .

The idea that remote gravitational forces influence volcanism is mirrored by the short-term data, says Tolstoy. She says the seismic data suggest that today, undersea volcanoes pulse to life mainly during periods that come every two weeks. That is the schedule upon which combined gravity from the moon and sun cause ocean tides to reach their lowest points, thus subtly relieving pressure on volcanoes below. Seismic signals interpreted as eruptions followed fortnightly low tides at eight out of nine study sites. Furthermore, Tolstoy found that all known modern eruptions occur from January through June. January is the month when Earth is closest to the sun, July when it is farthest—a period similar to the squeezing/unsqueezing effect Tolstoy sees in longer-term cycles. “If you look at the present-day eruptions, volcanoes respond even to much smaller forces than the ones that might drive climate,” she said.

We are left with a philosophical conundrum:

If heat comes from the seafloor and no one is around to measure it, does it make the ocean warmer?

The classic form of this question was first posed by Bishop George Berkeley (1685 – 1753), one of the Top Ten Philosophical Questions:

“If a tree falls in a forest and no one is around to hear it, does it make a sound?”

Updated by Steven Wright
If a tree falls in the forest and no one is around to see it, do the other trees make fun of it?

A variation from my personal experience:
If a man says something and his wife is not around to hear it, is he still wrong?

Steven Wright (on the urban cooling effect)
I turned my air conditioner the other way around, and it got cold out. The weatherman said, ‘I don’t understand it. It was supposed to be 80 degrees out today.’ I said, ‘Oops … ‘


A complete presentation of Plate Tectonics Theory of Climatology is by James Edward Kamis (here)



Ocean Trumps Global Warming

Internal Climate Variability Trumps Global Warming (here) is a
great post by hydrologist Rob Ellison confirming how the Oceans Make Climate. He was intrigued by discovering that rivers in eastern Australia changed form – from low energy meandering to high energy braided forms and back – every few decades. For almost 30 years he looked for the source and import of this variability, and has found it in the ocean.

Turns out that it is a combination of conditions in the northern and central Pacific Ocean that is of immense significance. A 20 to 30 year change in the volume of frigid and nutrient rich water upwelling from the abysmal depths. A generally warmer or cooler sea surface in the northern Pacific and greater frequency and intensity of El Niño or La Niña respectively. This sets up changes in patterns of wind, currents and cloud that cause changes in rainfall, biology and temperature globally. In the cool pattern shown above – booming ecologies, drought in the Americas and Europe, rainfall in Australia, Indonesia, Africa, China and India and cooler global temperatures. The reverse in the warm phase. Warming to 1944, cooling to 1976, warming again to 1998 and – at the least – not warming since. It leads to a prediction that the La Niña currently emerging is likely to be large.

A Persistent Ocean Cycle

Changes in the Pacific Ocean state can be traced in sediment, ice cores, stalagmites and corals. A record covering the last 12,000 years was developed by Christopher Moy and colleagues from measurements of red sediment in a South American lake. More red sediment is associated with El Niño. The record shows periods of high and low El Niño activity alternating with a period of about 2,000 years. There was a shift from La Niña dominance to El Niño dominance 5000 years ago that is associated with the drying of the Sahel. There is a period around 3,500 years ago of high El Niño activity associated with the demise of the Minoan civilisation (Tsonis et al, 2010).

Tessa Vance and colleagues devised a 1000 year record from salt content in an Antarctic ice core. More salt is La Niña as a result of changing winds in the Southern Ocean. It revealed several interesting facts. The persistence of the 20 to 30 year pattern. A change in the period of oscillation between El Niño and La Niña states at the end of the 19th century. A 1000 year peak in El Niño frequency and intensity in the 20th century which resulted in uncharacteristically dry condition since 1920.


The whole post is worth reading and a solid contribution to our understanding. Ellison’s summary is pertinent, compelling and wise.

It is quite impossible to quantify natural and anthropogenic warming in the 20th century.  The assumption that it was all anthropogenic is quite wrong.  The early century warming was mostly natural – as was at least some of the late century warming.  It seems quite likely that a natural cooling with declining solar activity – amplified through Pacific Ocean states – will counteract rather than add to future greenhouse gas warming.   A return to the more common condition of La Niña dominance – and enhanced rainfall in northern and eastern Australia – seems more likely than not.

I predict – on the balance of probabilities – cooler conditions in this century.  But I would still argue for returning carbon to agricultural soils, restoring ecosystems and research on and development of cheap and abundant energy supplies.  The former to enhance productivity in a hungry world, increase soil water holding capacity, improve drought resilience, mitigate flooding and conserve biodiversity.  We may in this way sequester all greenhouse gas emissions for 20 to 30 years.  The latter as a basis for desperately needed economic growth.  Climate change seems very much an unnecessary consideration and tales of climate doom – based on wrong science and unfortunate policy ambitions – a diversion from practical and measured development policy.

Australia’s River Systems ABC

Follow the Water–Arctic Ocean Flywheels

The motto of oceanography should be: “It’s not that simple.”

Dallas Murphy wrote that in a book containing his reflections from numerous voyages with ocean scientists, entitled Follow the Water: Exploring the Sea to Discover Climate. The author goes on to say:

“One reason why the ocean has been left out of the climate-change discussion is that its internal mechanisms and its interactions with the atmosphere are stunningly complex. That the ocean has been left out has helped pitch the discussion toward unproductive, distracting extremes–either global warming is bunk or sea levels are about to rise twenty feet–and to frame the issue as a matter of opinion, like the place of prayer in public schools.”

He also quotes respected Oceanographer Carl Wunsch: “One of the reasons oceanography has a flavor all it’s own lies in the brute difficulty of observing the Ocean.”

A previous post on the Climate Water Wheel referred to the metaphor of the ocean serving as a thermal flywheel in our planetary climate due to the massive storage of solar energy in bodies of water.  Another post provided some basics on the dynamics of sea ice.

Now, in keeping with the motto above, we shall see that indeed, it is not that simple when we look more closely inside the Arctic Ocean. For example, consider this map from Woods Hole Oceanographic Institution (WHOI):

“Follow the water: Cold, relatively fresh water from the Pacific Ocean enters the Arctic Ocean through the Bering Strait. It is swept into the Beaufort Gyre and exits into the North Atlantic Ocean through three gateways (Fram, Davis, and Hudson Straits). Warmer, denser waters from the Atlantic penetrate the Arctic Ocean beneath colder water layers, which lie atop the warmer waters and act as a barrier preventing them from melting sea ice.

Once in the Arctic Ocean basin, the water is swept into a mammoth circular current—driven by strong winds—called the Beaufort Gyre (BG). Mighty Siberian and Canadian rivers also drain into the gyre to create a great reservoir of relatively fresh water. Winds trap this water in a clockwise flow, but periodically, the winds shift and the gyre weakens, allowing large volumes of fresh water to leak out. This is “the flywheel,” said WHOI physical oceanographer Andrey Proshutinksy, and when it turns off, fresh water flows toward the North Atlantic.

The water exits the Arctic Ocean via several “gateways.” It can flow through the Fram Strait, between northeast Greenland and Svalbard Island, and then branch around either side of Iceland. It can flow around the west side of Greenland through Baffin Bay and out Davis Strait. It may also flow through a maze of Canadian islands and out Hudson Strait.
These gateways are two-way: They also let in the warmer Atlantic waters that—if not for the halocline—could melt Arctic sea ice.”


The BG Flywheel System

The research indicates that the complexity can be imagined as a series of flywheels, interacting and combining to moderate the short term effects of weather and changes in circulations of water and winds. Note that this conception shows the ocean flywheel as having four components or layers that operate in their own patterns while being interconnected.

And, as the flywheel system depicts, the ocean components are stratified by both temperature and salinity (saltiness). When sea ice forms, it releases salt into surface waters. These waters become denser and sink to form the Arctic halocline, a layer of cold water that acts as barrier between sea ice and deeper warmer water that could melt the ice. (Illustration by Jayne Doucette, WHOI)

More from WHOI:

Summarizing several hypotheses introduced recently in the publications mentioned above we conclude that the oceanic BG is a major part of the Arctic climate system and is responsible for:

a) Stabilization of the anticyclonic circulation of sea ice and upper ocean layers
b) Accumulation and release of liquid fresh water and sea ice from the BG
c) Ventilation of the ocean in coastal polynyas and openings along shelf-break
d) Regulation of the circulation and fractional redistribution of the summer and winter Pacific waters in the Arctic Ocean
e) Regulation of pathways of the freshwater from the Arctic to the North Atlantic

The sea ice flywheel is an intermediate link between the atmosphere and ocean. Also, sea ice is a product of the atmosphere and ocean interactions. It transfers momentum from the atmosphere to the ocean modifying it depending on sea ice concentration, thickness and its surface and bottom roughness and regulates heat and mass exchange between the atmosphere and ocean. Sea ice flywheel of the system is responsible for:

a) Regulation of momentum and heat transfer between the atmosphere and ocean
b) Accumulation and release of fresh water or salt during melting-freezing cycle
c) Redistribution of fresh water sources through involvement of the first year ice from the marginal seas into the BG circulation and keeping it there for years and transforming it into highly ridged and thick multi-year ice under converging conditions of the BG ice motion.
d) Memorizing of the previous years conditions and slowing down variations in order to avoid abrupt changes
e) Protection of ocean from overcooling or overheating (the latter is extremely important for polar biology)



Our planet’s climate has changed so little over thousands of years that alarms have been sounded over less than 1 degree celsius of estimated average warming since the Little Ice Age ended 150 years ago. But actually, our Modern Warming period was preceded by the Medieval Warm period, the Roman, and the Minoan Warm periods. Each of them was slightly cooler than the previous, and all of them warmer than now.

If you are looking for explanations why our moderate climate persists over millennia and varies only within a tight range of temperatures, give a thought to the role of the Arctic flywheel system.


Of course, even this is far from the whole story. As the map above shows, there’s lots more than the Beaufort Gyre going on. For example, the Transpolar Current drives flows of ice and water on the European side, in addition to the Beaufort Gyre acting on the North American side.

And despite the emphasis above on the Pacific water, the Atlantic Gulf stream supplies most of the water entering the Arctic.

“The Arctic Ocean is permanently supplied with new water from the Gulf Current, which enters the sea close at the surface near Spitsbergen. This current is called the West Spitsbergen current. The arriving water is relatively warm (6 to 8°C) and salty (35.1 to 35.3%) and has a mean speed of ca. 30 cm/sec-1. The warm Atlantic water represents almost 90% of all water masses the Arctic receives. The other ~10% comes via the Bering Strait or rivers. Due to the fact that the warm Atlantic water reaches usually the edge of the Arctic Ocean at Spitsbergen in open water, the cooling process starts well before entering the Polar Sea.”

Spitsbergen Triangle: Ground Zero for Climate Mysteries

Credit to Dr. Bernaerts for his writings on this subject, excerpts of which appear below.

The Island Nexus for Ocean Currents

From the Dutch: spits – pointed, bergen – mountains

The largest and only permanently populated island of the Svalbard archipelago in northern Norway. Constituting the westernmost bulk of the archipelago, it borders the Arctic Ocean, the Norwegian Sea, and the Greenland Sea. Spitsbergen covers an area of 39,044 km2 (15,075 sq mi), making it the largest island in Norway and the 36th-largest in the world.

The fact is that the winter temperatures made a jump of more than eight degrees Celsius at the gate of the Arctic Basin, after 1918. Nowadays, one century later, the event is still regarded as “one of the most puzzling climate anomalies of the 20th century”.

Dr. Bernaerts:

The overriding aspect of the location is the sea; the sea around Spitsbergen, the sea between particularly the Norwegian, the Greenland, and the Barents Seas (Nordic Sea). The Norwegian Sea is a huge, 3000 metres deep basin. This huge water mass stores a great amount of energy, which can transfer warmth into the atmosphere for a long time. In contrast the Barents Sea, in the southeast of Spitsbergen has an average depth of just around 230 metres. In- and outflow are so high that the whole water body is completely renewed in less than 5 years. However, both sea areas are strongly influenced by the water masses coming from the South. The most important element is a separate branch of the North Atlantic Gulf Current, which brings very warm and very salty water into the Norwegian Sea and into the Spitsbergen region. Water temperature and degree of saltiness play a decisive role in the internal dynamics of the sea body. And what might be the role of the huge basin of the Arctic Ocean, 3000 meters depth and a size of about 15 million square kilometers?

The difference towards the other seas mentioned is tremendous. The Arctic Ocean used to be widely ice covered in the first half of the 20th Century, the other seas only partly on a seasonal basis. Only between the open sea and the atmosphere an intensive heat transfer is permanently taking place. Compact sea ice reduces this transfer about 90% and more, broken or floating ice may change the proportion marginally. In this respect an ice covered Arctic Ocean has not an oceanic but ‘continental’ impact on the climate.

The Arctic Ocean is permanently supplied with new water from the Gulf Current, which enters the sea close at the surface near Spitsbergen. This current is called the West Spitsbergen current. The arriving water is relatively warm (6 to 8°C) and salty (35.1 to 35.3%) and has a mean speed of ca. 30 cm/sec-1. The warm Atlantic water represents almost 90% of all water masses the Arctic receives. The other ~10% comes via the Bering Strait or rivers. Due to the fact that the warm Atlantic water reaches usually the edge of the Arctic Ocean at Spitsbergen in open water, the cooling process starts well before entering the Polar Sea.

A further highly significant climate aspect of global dimension is the water masses the Arctic releases back to oceans. Actually, the outflow occurs mainly via the Fram Strait between Northeast Greenland and Spitsbergen, and together with very cold water from the Norwegian Sea basin the deep water spreads below the permanent thermocline into the three oceans.


The Spitsbergen Event 1918-1919

Beginning around 1850 the Little Ice Age ended and the climate began warming. Before that, at least since 1650 marked the first climatic minimum after a Medieval warm period, the Little Ice Age brought bitterly cold winters to many parts of the world, most thoroughly documented in the Northern Hemisphere in Europe and North America. The decreased solar activity and the increased volcanic activity are considered as causes. However, the temperature increase was remote and once again effected by the last major volcanic eruption of the Krakatoa in 1883. Up to the 1910s the warming of the world was modest.

Suddenly that changed. In the Arctic the temperatures literally exploded in winter 1918/19. The extraordinary event lasted from 1918 to 1939 is clearly demonstrated in the graph showing the ‘Arctic Annual Mean Temperature Anomalies 1880 – 2004’. But this extraordinary event has a number of facets, which could have been researched and explained. Meanwhile almost a full century has passed, and what do we know about this event today? Very little!

Studies considering the causation of the warming offer sketchy rather than well founded ideas. Here are a few examples:
• Natural variability is the most likely cause (Bengtsson, 2004);
• We theorize that the Arctic warming in the 1920s/1930s was due to natural fluctuations internal to the climate system (Johannessen, 2004).
• The low Arctic temperatures before 1920 had been caused by volcanic aerosol loading and solar radiation, but since 1920 increasing greenhouse gas concentration dominated the temperatures (Overpeck, 1997).
• The earlier warming shows large region-to-region, month-to-month, and year-to-year variability, which suggests that these composite temperature anomalies are due primarily to natural variability in weather systems (Overland, 2004).
• A combination of a global warming signal and fortuitous phasing of intrinsic climate patterns (Overland, 2008).

Arctic Regime Change

These explanations (and others such as CO2 or the AMOC) do not come to grips with how extreme and abrupt was this event. In the Spring of 1917, sea ice reached all the way to Spitsbergen, the only time in a century.

And the next year, temperatures rocketed upward, as shown by the weather station there:

A look at the SST history shows clearly an event as dramatic as a super El Nino causing a regime change. But this is the Atlantic, not the Pacific. Cooling followed, but temperatures stayed at a higher level than before.


The warming at Spitsbergen is one of the most outstanding climatic events since the volcanic eruption of Krakatoa, in 1883. The dramatic warming at Spitsbergen may hold key aspects for understanding how climate ticks. The following elaboration intends to approach the matter from different angles, but on a straight line of thoughts, namely:

  • WHERE: the warming was caused and sustained by the northern part of the Nordic Sea in the sea area of West Spitsbergen the pass way of the Spitsbergen Current.
  • WHEN: The date of the commencement of warming can be established with high precision of few months, and which was definitely in place by January 1919.
  • WHY: the sudden and significant temperature deviation around the winter of 1918/19 was with considerable probability caused, at least partly, by a devastating naval war which took place around  the British Isles, between 1914 and 1918.

There is much more evidence and analysis supporting Dr. Bernaerts’ conclusions here:


Conclusion:  Unless your theory of climate change can make sense of the Spitsbergen Event, then it cannot inspire confidence. You may not be entirely convinced by Dr. Bernaerts’ explanation, but he at least has one–nobody else  has even tried.

Evidence is Mounting: Oceans Make Climate

Update May 28, 2015, with additional detail from Dr. McCarthy

Update May 29, 2015, with additional context from Bob Tisdale

The RAPID moorings being deployed. Credit: National Oceanography Centre

A new study, by scientists from the University of Southampton and National Oceanography Centre (NOC), implies that the global climate is on the verge of broad-scale change that could last for a number of decades. This new climatic phase could be half a degree cooler.

The change to the new set of climatic conditions is associated with a cooling of the Atlantic, and is likely to bring drier summers in Britain and Ireland, accelerated sea-level rise along the northeast coast of the United States, and drought in the developing countries of the Sahel region. Since this new climatic phase could be half a degree cooler, it may well offer a brief reprise from the rise of global temperatures, as well as resulting in fewer hurricanes hitting the United States.

The study, published in Nature, proves that ocean circulation is the link between weather and decadal scale climatic change. It is based on observational evidence of the link between ocean circulation and the decadal variability of sea surface temperatures in the Atlantic Ocean.

Lead author Dr Gerard McCarthy, from the NOC, said: “Sea-surface temperatures in the Atlantic vary between warm and cold over time-scales of many decades. These variations have been shown to influence temperature, rainfall, drought and even the frequency of hurricanes in many regions of the world. This decadal variability, called the Atlantic Multi-decadal Oscillation (AMO), is a notable feature of the Atlantic Ocean and the climate of the regions it influences.”

The strength of ocean currents has been measured by a network of sensors, called the RAPID array, which have been collecting data on the flow rate of the Atlantic meridonal overturning circulation (AMOC) for a decade.

Dr David Smeed, from the NOC and lead scientist of the RAPID project, adds: “The observations of AMOC from the RAPID array, over the past ten years, show that it is declining. As a result, we expect the AMO is moving to a negative phase, which will result in cooler surface waters. This is consistent with observations of temperature in the North Atlantic.”


Some additional detail from Dr. McCarthy:

Results from the RAPID array

Gerard McCarthy, David Smeed, Darren Rayner, Eleanor Frajka-Williams, Aurélie Duchez, Bill Johns, Molly Baringer, Chris Meinen, Adam Blaker, Stuart Cunningham and Harry Bryden

“The RAPID/MOCHA/WBTS mooring array at 26ºN in the Atlantic has been delivering twice daily estimates of the strength of the AMOC since 2004. A unique array, the observations have revolutionised our understanding of the variability of the AMOC on sub-annual, seasonal and, most recently, interannual timescales. An update to the AMOC timeseries has recently been produced.   As well as extending the data, the timeseries to October 2012 contains several improvements to the calculation.

A dramatic low in the AMOC was observed in winter 2009/10, where the AMOC declined by 30%. This has been shown to have resulted in a sustained reduction in heat content of the North Atlantic. The 2009/10 dip in AMOC strength was followed by a second dramatic low in 2010/11. Historical analogues of double minima in successive winters have been identified in NEMO runs where they are associated with extreme negative values of the Arctic oscillation and have been linked with ocean re-emergence. Interestingly, there is also a link with surface air temperatures and, consequently, European wintertime conditions.

The latest update of the AMOC time series to October 2012 shows a continuing trend in the circulation at 26ºN switching from an overturning to a gyre circulation. This leads to weakened southward transport of lower North Atlantic Deep Water, the strength of which from 2004-2012 is weaker than in historical measurements. The IPCC report in 2007 reported that the AMOC was ‘very likely’ to weaken in the 21st century. Maintaining the sustained observations of the RAPID array is key to observing this climate metric.”

Rapid Project Webpage is here: http://www.rapid.ac.uk/rapidmoc/

Figure 1:Ten-day (colours) and three month low-pass (black) timeseries of Florida Straits transport (blue), Ekman transport (black), upper mid-ocean transport (magenta), and overturning transport (red) for the period 2nd April 2004 to mid- March 2014. Florida Straits transport is based on electromagnetic cable measurements; Ekman transport is based on ERA winds. The upper mid-ocean transport, based on the RAPID time series, is the vertical integral of the transport per unit depth down to the deepest northward velocity (~1100 m) on each day. Overturning transport is then the sum of the Florida Straits, Ekman, and upper mid-ocean transports and represents the maximum northward transport of upper-layer waters on each day. Positive transports correspond to northward flow.

Additional info here: http://www.livescience.com/50998-jet-stream-controls-atlantic-climate-cycles.html


Getting a reprieve from the dangers of global warming would be good news, but these facts were not well received by everyone last month at a conference in Vienna, as tweeted by Dr. McCarthy:

Bob Tisdale provides additional context on the AMO and on this paper, as well as critiques of some other papers here: https://bobtisdale.wordpress.com/2015/05/29/new-paper-confirms-the-drivers-of-and-processes-behind-the-atlantic-multidecadal-oscillation/

For more on this topic see: